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PREFACE

The Occupational Safety and Health Act of 1970 emphasizes the need 
for standards to protect the health and provide for the safety of 
workers occupationally exposed to an ever-increasing number of potential 
hazards. The National Institute for Occupational Safety and Health 
(NIOSH) evaluates all available research data and criteria and 
recommends standards for occupational exposure. The Secretary of Labor 
will weigh these recommendations along with other considerations, such 
as feasibility and means of implementation, in promulgating regulatory 
standards.

NIOSH will periodically review the recommended standards to ensure 
continuing protection of workers and will make successive reports as new 
research and epidemiologic studies are completed and as sampling and 
analytical methods are developed.

The contributions to this document on hydrazines by NIOSH staff, 
other Federal agencies or departments, the review consultants, the 
reviewers selected by the Society of Toxicology and the American 
Industrial Hygiene Association, and Robert B. O'Connor, M.D. , NIOSH 
consultant in occupational medicine, are gratefully acknowledged.

The views and conclusions expressed in this document, together with 
the recommendations for a standard, are those of NIOSH. They are not 
necessarily those of the consultants, the reviewers selected by 
professional societies, or other Federal agencies. However, all 
comments, whether or not incorporated, were considered carefully and 
were sent with the criteria document to the Occupational Safety and 
Health Administration for consideration in setting the standard. The 
review consultants and the Federal agencies which received the document
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The División of Criteria Documentation and Standards 
Development, National Institute for Occupational Safety and 
Health, had primary responsibility for the development of the 
criteria and recommended standard for hydrazines. Imoglene F. 
Sevin, Ph.D., of this Division served as criteria manager. SRI 
International developed the basic information for consideration 
by NIOSH staff and consultants under contract CDC-99-74-31.

The Division review of this document was provided by Keith H. 
Jacobson, Ph.D. (Chairman), Douglas L. Smith, Ph.D., Howard L. 
McMartin, M.Û., Richard J. Lewis, Sr. (Division of Technical 
Services), and Robert L. Roudabush, Ph.D.
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I. RECOMMENDATIONS FOR A HYDRAZINES STANDARD

NIOSH recommends that employee exposure in the workplace to 

hydrazine, methylhydrazine, I,1-dimethylhydrazine, 1,2-dimethylhydrazine, 

and phenylhydrazine, and their salts formed by addition with acids, such as 

sulfates, hydrochlorides, or hydrobromides, be controlled by adherence to 

the following sections. The standard is designed to protect the health and 

provide for the safety of employees for up to a 10-hour workshift, 40-hour 

workweek, over a working lifetime. Compliance with all sections of the 

standard should, as a minimum, substantially reduce the risk of cancer 

induced by these hydrazines and prevent other adverse effects, both acute 

and chronic, which could result from exposure in the workplace. Sufficient 

technology exists to permit compliance with the recommended standard. The 

employer should regard the recommended environmental limits as the upper 

boundaries of exposure and make every effort to maintain the exposure as 

low as is technically feasible. The standard will be subject to review and 

revision as necessary.

The recommended standard is based on the conclusion that valid 

evidence of skin absorption, blood and liver effects, and tumor induction 

in experimental animals by these hydrazines is relevant to human exposure. 

No demonstrably safe level of exposure is evident, and in view of the 

severity of the toxic effects, especially carcinogenicity, the limits of 

exposure recommended represent the lowest detectable concentrations. The 

environmental limits are likely to offer greater protection from 

nonneoplastic effects from some hydrazine compounds than from others. They
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assure protection to individual compounds only when skin absorption is 

prevented and they cannot be directly extrapolated to mixtures.

The criteria and recommended standard apply to exposure of workers to 

hydrazine and its derivatives, methylhydrazine, 1,1-dimethylhydrazine, 1,2- 

dimethylhydrazine, and phenylhydrazine, and their salts. The term 

"hydrazines" will be used throughout the document to mean all five 

compounds and their salts unless a compound is referred to specifically. 

Common synonyms used for methylhydrazine are monomethylhydrazine and MMH; 

for 1,1-dimethylhydrazine, unsymmetrical or asymmetrical dimethylhydrazine 

and UDMH; and for 1,2-dimethylhydrazine, symmetrical dimethylhydrazine and 

SDMH. "Occupational exposure to hydrazines" is defined as work in any area 

where one or more of the hydrazines is stored, produced, processed, 

transported, handled, or otherwise used and present in such a manner that 

vapors or aerosols may be released in workroom air or that the materials 

may spill or splash onto the skin or into the eyes.

Section 1 - Environmental (Workplace Air)

(a) Concentrations

Occupational exposure to hydrazines shall be controlled so that 

employees are not exposed at concentrations greater than those specified 

below, expressed as milligrams of the free base per cubic meter of air 

(mg/cu m), determined as ceiling concentrations in any 2-hour period:

hydrazine
methylhydrazine

- 0.04 mg/cu m (0.03 ppm)*
- 0.08 mg/cu m (0.04 ppm)

1,1-dimethylhydrazine - 0.15 mg/cu m (0.06 ppm) 
phenylhydrazine - 0.6 mg/cu m (0.14 ppm)

*Approximate equivalents in parts of free base per million 
parts of air (ppm).
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These recommended limits are the lowest concentrations measured by the 

recommended method of analysis with an analytical precision of at least 

15%. No limit is recommended for 1,2-dimethylhydrazine, since an

acceptable method of sampling and analysis is presently unavailable.

(b) Sampling and Analysis

Samples in the work environment shall be collected and analyzed 

according to the procedures described in Appendix I or by any methods at 

least equivalent in precision, accuracy, and sensitivity.

Section 2 - Medical

Medical surveillance shall be made available as outlined below to all 

persons subject to occupational exposure to hydrazines.

(a) Preplacement medical examinations shall include at least:

(1) Comprehensive medical and work histories.

(2) Comprehensive physical examination.

(3) Specific clinical tests including complete and

differential blood count; liver function tests including serum glutamic- 

oxaloacetic transaminase (SGOT) and serum glutamic-pyruvic transaminase 

(SGPT); urinalysis including specific gravity, glucose, protein, and 

microscopic examination; and a 14- x 17-inch posteroanterior chest 

roentgenogram.

(4) A judgment of the worker’s ability to use positive

pressure respirators.

(5) Urobilinogen and serum bilirubin tests shall be 

considered by the responsible physician.
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(b) Periodic examinations shall be made available at least

annually to those working with hydrazines. These examinations shall

include at least:

(1) Interim medical and work histories.

(2) Physical examination as outlined in paragraphs (a)(2),

(a)(3), and (a)(5) of this section. In addition, for workers over the age 

of 40, proctosigmoidoscopy shall be made available to those exposed to 1,2- 

dimethylhydrazine, and it should be considered for those exposed to other 

hydrazines.

(c) In view of the numerous body systems in which toxic effects of 

hydrazines have been demonstrated, medical and work histories and physical 

examinations should be thorough and should give particular attention to 

combinations of signs or symptoms, including evidence of dermal contact, 

that may indicate toxicity.

(d) In the event of an illness caused by exposure to hydrazines, 

appropriate medical services shall be made available.

(e) In an emergency involving massive exposure to the hydrazines, 

either by inhalation or dermal contact, immediate medical attention and 

appropriate followup medical care shall be provided.

(f) Pertinent medical records shall be maintained for all 

employees exposed to hydrazines in the workplace. Such records shall be 

kept for at least 30 years after the last occupational exposure to 

hydrazines. Records of environmental exposures applicable to an employee 

shall be included in the employee's medical records. These records shall 

be made available to the designated medical representatives of the
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Secretary of Health, Education, and Welfare, of the Secretary of Labor, of 

the employer, and of the employee or former employee.

Section 3 - Labeling and Posting

All labels and warning signs shall be printed both in English and in 

the predominant language of non-English reading workers. Workers who 

cannot read the language used on labels or posted signs shall receive 

information regarding hazardous areas and shall be informed of the 

instructions printed on labels and signs.

All shipping and storage containers for hydrazines shall be labeled, 

and all areas where any hydrazines are stored, produced, used, or processed 

shall be posted in accordance with the following paragraphs.

(a) Containers of hydrazines shall bear the following label in 

addition to, or in combination with, labels required by other statutes, 

regulations, or ordinances.

(Name of Compound)
(Tradename, Chemical Name, Common Name)

DANGER!
EXTREME HEALTH HAZARD 
MAY CAUSE CANCER 

MAY BE ABSORBED THROUGH SKIN

Keep container closed.
Avoid contact with skin and eyes.
Avoid breathing air contaminated with this substance.

First Aid: In case of contact, immediately flush with copious
amounts of water. Obtain prompt medical attention.
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Containers of hydrazines that are considered flammable or combustible shall 

also bear the following label:

FLAMMABLE (or COMBUSTIBLE)

Keep away from heat, spark, open flame, and oxidants.

Containers of material contaminated with hydrazines, including those 

holding clothing or animal carcasses, shall bear the following 

precautionary label:

CAUTION

MATERIAL CONTAMINATED WITH 
CANCER-SUSPECT AGENT 
(Name of Compound)

(b) The following warning sign shall be posted in readily visible 

locations where hydrazines are stored, produced, or used, particularly at 

the entrance to the areas.

WARNING 
CANCER-SUSPECT AGENT

(Chemical Name) USED IN THIS AREA 
AUTHORIZED PERSONNEL ONLY

Avoid breathing air contaminated with this substance.
In case of contact, flush with copious amounts of water. Wash 
clothing before reuse. Obtain prompt medical attention.

If respiratory protection is required in accordance with Section 4, the 

following statement in large letters shall be added to the required sign:
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RESPIRATORY PROTECTION REQUIRED IN THIS AREA

Where the presence of hydrazines could result in a fire hazard, the sign 

shall also contain the following information:

FIRE AND EXPLOSION HAZARD

Section 4 - Personal Protective Clothing and Equipment

All systems or equipment containing the hydrazines shall be designed 

to minimize the possibility of vapor or aerosol inhalation, skin or eye 

contact, and spills or leaks. When necessary, these controls shall be 

supplemented by the use of personal protective clothing and equipment.

(a) Protective Clothing

(1) The employer shall provide full-face shields (8-inch

minimum) and goggles which shall be worn during any operation in which 

there is a reasonable possibility that hydrazines may enter the eyes or 

splash onto the face.

(2) The employer shall provide full-body protective

clothing, including gloves and boots, and shall ensure that employees wear

this clothing when spills or splashes of hydrazines may occur, such as 

during repair or during transfer operations.

(3) Gross contamination shall be removed from protective

clothing before the clothing is taken off the wearer.
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(b) Escape Equipment

Emergency equipment shall be located at well-marked and clearly 

identified stations and shall be adequate to permit all personnel to escape 

from the area.

(c) Respiratory Protection

Respirators may be used only when engineering controls are being 

installed or tested, during nonroutine maintenance or repair, in 

emergencies that may involve brief exposure in excess of the recommended 

limits, or for entry into confined spaces. In the situations listed above, 

employees exposed to 1,2-dimethylhydrazine shall wear a respirator. When 

use of a respirator is permitted, it shall be selected and used in

accordance with the following requirements:

(1) The employer shall provide respirators in accordance

with Table 1-1 and shall ensure that, when required, they are properly

used. The respiratory protective devices provided in conformance with 

Table 1-1 shall be those approved by NIOSH or the Mining Safety and Health 

Administration (MSHA). The standard for approval is specified under the 

provisions of 30 CFR 11.

(2) The employer shall ensure that employees are properly

instructed in the use of respirators assigned to them and on how to test 

for leakage, proper operation, and proper fit as judged by quantitative fit 

tests.

(3) The ' employer shall provide for the cleaning,

sanitizing, inspecting, maintaining, repairing, and storing of respirators 

and shall ensure that employees are provided with clean respirators that 

are in good operating conditon.
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(5) Protective equipment suitable for emergency entry or 

reentry shall be located at clearly identified stations outside the work 

areas.

TABLE 1-1

RESPIRATOR SELECTION GUIDE FOR HYDRAZINES

Concentration 
of Hydrazines

Respirator Type Approved under 
Provisions of 30 CFR 11

Greater than the 
environmental 
limits specified 
in Section 1*

(1) Self-contained breathing ap
paratus with full facepiece oper
ated in pressure-demand or other 
positive pressure mode
(2) Combination Type C supplied- 
air respirator with full facepiece 
and auxiliary self-contained air 
supply operated in pressure-demand 
mode

Emergency entry 
or entry into a 
confined space

Self-contained breathing appara
tus with full facepiece operated 
in pressure-demand or other posi
tive pressure mode

*or exposure to 1,2-dimethylhydrazine as specified in 
this section

Section 5 - Informing Employees of Hazards from Hydrazines

(a) At the beginning of employment and at least annually 

thereafter, the employer shall provide training, supplemented by written 

information, on the hazards of hydrazines to employees exposed to them.
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(b) The employer shall institute a continuing education program, 

conducted by persons qualified by experience or training, to ensure that 

all employees have current knowledge of job hazards, proper maintenance and 

cleanup methods, and proper respirator use. The instructional program 

shall include a description of the general nature of the environmental and 

medical surveillance procedures and of the advantages to the employees of 

participating in them. As a minimum, instruction shall include the 

information in Appendix II, which shall be kept on file and be readily 

accessible to employees assigned to work areas where there is occupational 

exposure to hydrazines.

(c) Required information shall be recorded on the "Material Safety 

Data Sheet" shown in Appendix II or on a similar form approved by the 

Occupational Safety and Health Administration, US Department of Labor.

Section 6 - Work Practices

(a) Control of Airborne Hydrazines

Engineering controls, such as process enclosure or local exhaust 

ventilation, shall be used when needed to keep concentrations of airborne 

hydrazines within acceptable levels. Ventilation systems shall be designed 

to prevent accumulation or recirculation of airborne hydrazines in the 

workplace environment and to remove hydrazines from the breathing zone of 

workers. When needed, moving parts shall be sparkproof. Such systems 

should also be designed to operate under negative pressure to prevent leaks 

into the work environment. Enclosures, exhaust hoods, duct work, and fans 

shall be checked periodically, and preventive maintenance and cleaning



shall be performed when necessary to ensure their integrity and proper 

operation. Airflow at each hood shall be measured at least every 3 months 

to ensure that design airflow is maintained. A log shall be kept showing 

design airflow and the results of quarterly inspections. Continuous 

airflow indicators, such as water or oil manometers, mounted at appropriate 

points and marked to indicate acceptable airflow are recommended. All 

adjustments to the ventilation system should be made by authorized 

maintenance personnel. Before maintenance work on control equipment 

begins, sources of contamination from hydrazines shall be eliminated to the 

extent feasible. Exhaust ventilation systems discharging to outside air 

shall conform with applicable local, state, and Federal air pollution 

regulations and shall not constitute a hazard to employees or to the 

general population.

(b) Regulated Areas

Regulated areas shall be established and maintained where the

hydrazines are stored, produced, or otherwise used, and access to these

areas shall be limited to authorized persons. A log shall be kept of those

entering such areas.

(c) Laboratory Activities

When hydrazines are used in laboratory activities, the following 

provisions, in addition to other sections, shall be followed.

(1) Mechanical pipetting aids shall be used for all 

pipetting procedures.

(2) Experiments, procedures, and equipment that could 

produce aerosols or vapors of hydrazines shall be confined to laboratory- 

type hoods, glove boxes, or other similar control apparatus. Exposure
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chambers and associated generation apparatus shall be separately 

ventilated.

(3) Surfaces on which the hydrazines are handled shall be 

impervious to absorption or penetration by these hydrazines.

(4) Laboratory vacuum systems shall not be connected to 

nonregulated areas. These vacuum systems, hoods, and exposure chambers 

shall be exhaust ventilated in a manner consistent with Federal and local 

air pollution regulations.

(5) Airflow in the laboratory shall be established in such 

a pattern as to flow from the least to the most contaminated area. 

Contaminated exhaust air shall not be recirculated or discharged to other 

work areas, regulated or nonregulated.

(d) Work Clothing

(1) Employees, including animal handlers, working in 

regulated areas shall wear coveralls, head, foot, and shoe coverings, and 

gloves.

(2) Laboratory employees working in regulated areas shall 

wear appropriate laboratory clothing, such as a solid-front gown, surgical 

scrub suit, or fully buttoned laboratory coat, and head, foot, and shoe 

coverings and gloves.

(3) Employees shall remove work clothing when leaving 

regulated areas. After the last use in a workshift, work clothing shall be 

placed in a properly labeled, airtight container for decontamination or 

disposal.

(4) Work clothes shall be changed daily or when 

accidentally contaminated by the hydrazines.
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(5) The employer shall provide for laundering of this 

clothing and shall ensure that soiled work clothing is not taken home by 

the employee. Precautions shall be taken to protect personnel who handle 

and launder soiled clothing. These workers shall be advised of the hazards 

of exposure to hydrazines and the means of preventing such exposure.

(e) Hygiene

Good personal hygiene practices shall be required. Employees leaving 

regulated areas shall wash their hands, forearms, face, and neck, 

particularly before eating and smoking or using toilet facilities. When 

work for the shift is completed, the employee shall shower and leave the 

regulated area.

(f) Disposal of Waste

Waste material shall be disposed of in a manner that is not hazardous 

to employees or to the general population. Contaminated wastes and animal 

carcasses shall be collected and stored in impervious containers. The 

containers shall be closed and the outer surface decontaminated before 

removal from the work area. In selecting the method of waste disposal, 

applicable local, state, and Federal regulations should be consulted. If 

the waste is incinerated, release of hydrazines shall be prevented.

(g) Storage and Handling

All hydrazines should be stored at temperatures well below their 

boiling points. Hydrazines that are ignitable shall be stored in 

electrically grounded containers and isolated from ignition sources and 

oxidants. All containers of hydrazines shall be kept tightly closed when 

not in use and stored in a cool ventilated room or sheltered outside space. 

In the containers, a blanket of nitrogen or other inert gas should be
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placed over the hydrazines. Containers shall be emptied so that the 

possibility of spills and the escape of airborne hydrazines are minimized,

(h) Entry into Confined Spaces

Entry into confined spaces, such as tanks, pits, tank cars, and 

process vessels, that have contained hydrazines shall be controlled by a

permit system. Permits shall be signed by an authorized employer

representative, certifying that preparation of the confined space,

precautionary measures, and personal protective equipment are adequate and 

that the prescribed procedure will be followed.

(1) All lines shall be disconnected or blocked while the

vessel is being cleaned. All valves or pumps leading to and from the 

vessel shall be locked out or tagged out.

(2) The vessel shall be either washed with water and purged

with air, or purged with nitrogen and then with air.

(3) The vessel shall then be checked by trained personnel

for fire or explosion hazard, airborne hydrazines, possible oxygen

deficiency, and concentrations of other likely contaminants, to assure that 

no danger exists.

(4) If a respirator is necessary, a self-contained

breathing apparatus as specified in Table 1-1 shall be provided to the

employee.

(5) Each employee entering the vessel shall be equipped

with appropriate respiratory protection, a harness, and a lifeline. At

least one other person equipped with appropriate respiratory protection,

harnesses, and lifelines shall watch at all times from the outside. At 

least two more persons should be available to assist in an emergency.
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Mechanical ventilation shall be provided continuously when workers are 

inside the vessel.

(i) Emergency Procedures

For all work areas where there is a potential for emergencies 

involving hydrazines, employers shall take all necessary steps to ensure 

that employees are instructed in and follow the procedures specified below 

and any others appropriate for the specific operation or process.

(1) Instructions shall include designation of medical 

receiving facilities and prearranged plans for immediate evacuation of 

employees exposed to or in contact with hydrazines, for any necessary calls 

for assistance, and for reentry for repairs or cleanup of areas where leaks 

or spills of hydrazines have occurred.

(2) Telephone numbers for emergency assistance shall be

prominently posted.

(3) Employees not essential to emergency operations shall

be evacuated from hazardous areas during emergencies.

(4) Personnel inadequately protected against the attendant

hazards shall not shut off sources of hydrazines, clean up spills, or 

control and repair leaks. Spilled hydrazines shall be stabilized with a 

dilute acid such as acetic or hydrochloric acid, flushed into a holding 

tank, and inactivated with dilute hypochlorite or another oxidant.

(5) Eye, skin, and approved respiratory protective devices,

specified in Section 4, shall be used by personnel essential to emergency 

operations.
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(6) Fire shall be extinguished by coarse sprays of water, 

when appropriate. Advanced or large fires shall be fought from a safe 

distance or from a protected area.

(7) Hydrazines in contact with skin or eyes shall be 

immediately flushed away with copious quantities of water, and medical 

attention shall be obtained promptly.

Section 7 - Sanitation

(a) The preparation, storage, dispensing (including vending

machines), or consumption of food shall be prohibited in regulated areas.

(b) Smoking shall be prohibited in regulated areas.

(c) Employers shall provide emergency showers and eyewash

fountains, with adequate pressure of water, that are quickly accessible in 

areas where hydrazines may contact the skin or eyes. This equipment shall 

be kept in good working condition and shall be inspected frequently.

(d) Conveniently located washing facilities shall be provided for 

all employees who work in regulated areas. Locker room facilities, 

including showers, shall be located in nonexposure areas. Employees shall 

be required to change from street clothes before entering regulated areas. 

The locker room facilities shall provide for storing street clothing and 

clean work clothing away from soiled work clothing. Airtight containers 

shall be provided for storage and segregation of contaminated work 

clothing. The clothing shall be held in these containers until it is 

removed for decontamination or disposal.
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Section 8 - Monitoring and Recordkeeping

(a) Industrial Hygiene Surveys

Each employer who has a place of employment in which any of the 

hydrazines are stored, produced, processed, or otherwise used shall 

determine by an industrial hygiene survey the areas in which occupational 

exposure occurs. Records of these surveys shall be retained until the next 

survey has been completed. If an employer concludes that there is no 

occupational exposure to hydrazines, the records shall show the basis for 

this conclusion. Surveys shall be repeated at least annually and within 14 

days after any process change likely to result in occupational exposure to 

hydrazines.

(b) Personal Monitoring

If it has been determined that occupational exposure to hydrazines 

(other than 1,2-dimethylhydrazine) occurs, the employer shall institute 

environmental monitoring.

(1) A program of personal monitoring shall be instituted to

identify and measure, or permit calculation of, the exposure of each

employee. Source and area monitoring may be used to supplement personal 

monitoring.

(2) In all personal monitoring, samples representative of

the exposure in the breathing zone of the employee shall be collected.

(3) For each determination of the concentration of 

hydrazines, a sufficient number of samples shall be taken to characterize 

the employee's exposure. Variations in the employee's work and production 

schedules, location, or duties, and changes in production schedules shall 

be considered in deciding when samples are to be collected.
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(4) Each operation in each regulated area shall be sampled 

at least once every 6 months while hydrazines are being used. For 

intermittent operations, ie, lasting for less than 6 months, at least one 

monitoring regimen shall be conducted during each operation period. If an 

employee is found to be exposed to the hydrazines at concentrations 

exceeding the recommended ceiling limits, the exposure of that employee 

shall be measured at least once every week, control measures shall be 

initiated, and the employee shall be notified of the exposure and of the 

control measures being implemented. Such monitoring shall continue until 

two consecutive determinations, at least 1 week apart, indicate that the 

employee’s exposure no longer exceeds the recommended occupational exposure 

limit; routine semiannual monitoring may then be resumed.

(c) Recordkeeping

Records of environmental monitoring and pertinent medical records 

shall be kept for at least 30 years after the employee’s last occupational 

exposure to hydrazines. Records of environmental monitoring shall include 

an identification of the employee being monitored, duties and job locations 

within the worksite, time and dates of sampling and analysis, sampling and 

analytical methods used and available evidence of their precision and 

accuracy, the number, duration, and results of samples taken, environmental 

concentrations determined from these samples, and the type of personal 

protective equipment used by the employee. Rosters of authorized persons 

who enter regulated areas shall also be retained for 30 years. 

Environmental monitoring records and entry rosters shall be made available 

to designated representatives of the Secretary of Labor and of the 

Secretary of Health, Education, and Welfare. Employees shall have access
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to data on their environmental exposures. Copies of records of 

environmental exposures applicable to an employee shall be included in the 

employee's medical records. These medical records shall be made available 

to the designated medical representatives of the Secretary of Labor, of the 

Secretary of Health, Education, and Welfare, of the employer, and of the 

employee or former employee.

«
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II. INTRODUCTION

This report presents the criteria and the recommended standard based 

thereon which were prepared to meet the need for preventing impairment of 

health from exposure to the hydrazines. The criteria document fulfills the 

responsibility of the Secretary of Health, Education, and Welfare under 

Section 20 (a)(3) of the Occupational Safety and Health Act of 1970 to

"...develop criteria dealing with toxic materials and harmful physical 

agents and substances which will describe...exposure levels at which no 

employee will suffer impaired health or functional capacities or diminished 

life expectancy as a result of his work experience."

NIOSH, after a review of data and consultation with others, 

formalized a system for the development of criteria upon which standards 

can be established to protect the health and to provide for the safety of 

employees exposed to hazardous chemical and physical agents. The criteria 

and recommended standard should enable management and labor to develop 

better engineering controls resulting in more healthful work environments 

and simply complying with the recommended standard should not be the final 

goal.

These criteria for a standard for hydrazines are part of a continuing 

series of criteria developed by NIOSH. The proposed standard applies to 

the processing, manufacture, handling, storage, and use of the hydrazines. 

The standard was not designed for the population-at-large, and any 

extrapolation beyond occupational exposures is not warranted. It is 

intended to (1) protect against injury from hydrazines, (2) be measurable
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by techniques that are valid, reproducible, and available to industry and 

government agencies, and (3) be attainable with existing technology.

The recommended exposure limits for hydrazines are based on the 

conclusion that these substances are likely to be carcinogenic to humans. 

This evidence is especially strong in the case of hydrazine and 1,2-

dimethylhydrazine but is persuasive in regard to all the compounds.

Although full information is not available on each of the hydrazines, 

compounds of this group clearly produce toxic effects on the liver, the 

kidneys, and blood, the severity and type of response being dependent on 

the individual compound. In some cases, these effects are so severe as to 

warrant a low environmental limit even without consideration of

carcinogenicity. In addition, these compounds are acutely toxic, producing 

effects on the central nervous system (CNS) that are manifested by 

convulsions and other less severe signs. Finally, hydrazines are local 

irritants to the skin and eyes, and systemic toxicity can result from such 

exposures. NIOSH considered these other effects, as well as 

carcinogenicity, in deriving a recommended standard for the hydrazines.

Particular attention was also given to limit dermal contact with the

hydrazines, a potential source of exposure.

At this time, no environmental limit is being recommended for 1,2- 

dimethylhydrazine, since an acceptable analytical method has not been 

found. 1,2-Dimethylhydrazine is a potent carcinogen in animals, and its

use is apparently limited to the study of colon cancer.

Inhalation studies are needed to determine the potential

carcinogenicity of the hydrazines by a route more appropriate to workplace 

exposure. Such studies are currently in progress for three of the

21



compounds, and the applicable recommendations will be considered for review 

and revision, as necessary, when this information becomes available. 

Little information exists for phenylhydrazine, in particular, on either its 

carcinogenicity or other effects. Much of this information is primarily of 

historical interest and needs to be reconfirmed by more modern studies. 

The impurities resulting from manufacture and decomposition of hydrazines, 

their role in toxicity, and their carcinogenicity also need to be 

investigated.
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III. BIOLOGIC EFFECTS OF EXPOSURE

The biologic effects of hydrazines on humans and on animals discussed 

in this chapter include those of five compounds: hydrazine (H2NNH2),

methylhydrazine (CH3NHNH2), 1,1-dimethylhydrazine ((CH3)2NNH2), 1,2-

dimethylhydrazine (CH3NHNHCH3), and phenylhydrazine (C6H5NHNH2). All these 

hydrazines are at least slightly basic and polar, and they are strong 

reducing agents. The hydrazine bases are used in the production of salts 

and hydrazones that are used in surfactants, detergents, plasticizers, 

pharmaceuticals, insecticides, and herbicides [1]. Three of the hydrazines 

(hydrazine, methylhydrazine, and 1,1-dimethylhydrazine) have been used as 

rocket propellants [2]. Hydrazines are very reactive and have wide use,

and they are capable of causing a variety of biologic effects.

The discussion of the toxic effects of the hydrazines includes the 

salts of hydrazines such as sulfate or hydrochloride since it is implicit 

that they differ in toxicity from the free base only when differences in 

pH, solubility, volatility, or mass (in expression of doses) are relevant 

to the development or expression of toxicity. Such salts are weakly bonded 

coordination compounds, and without regard to the form of the hydrazine

compound administered, the salt or free base is formed according to the

biologic medium. For example, the free base added to stomach contents will 

quickly form the hydrochloride salt, whereas in blood the free base form is 

more likely.

There has been a great deal of interest in the toxicologic

implications of the hydrazines. As a result, there have been many animal 

studies conducted on the three hydrazines being used as rocket fuels.
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Periodically, comprehensive reviews have been prepared by various groups, 

including the US Air Force [3,4] and the International Agency for Research 

on Cancer (IARC) [5]. The Committee on Toxicology of the National Academy 

of Sciences [6] also provided documentation on establishing guidelines for 

short-term community air exposures.

In addition, NIOSH has expressed concern about the possible 

tumorigenicity of a number of chemicals, including several hydrazines 

(Federal Register 40:26434, June 23, 1975). In the 1976 edition of NIOSH's 

Registry of Toxic Effects of Chemical Substances [7], several hydrazines 

were listed as animal carcinogens based, primarily, on the 1974 report of 

studies by IARC [5]. The most relevant studies cited by IARC, together 

with additional investigations of experimental carcinogenicity, will be 

reviewed and discussed.

Most of the hydrazines used in industrial processes are of technical 

grade and may contain trace amounts of contaminants either as decomposition 

products or as byproducts of the synthetic process. Contaminants found in 

propellant-grade hydrazine include 0.1-0.6% carbon dioxide, 0.3-1.0% water, 

0.17-0.36% aniline, and trace amounts (0.3-4.6 ppm) of chloride [8]. 

Nitrosodimethylamine, a known hepatotoxin and carcinogen [9,10], is a 

starting compound in the synthesis of 1,1-dimethylhydrazine [11] and has 

been found in 1,1-dimethylhydrazine as a contaminant [12,13].

Little information is available on the decomposition of the 

hydrazines in air and water. Hydrazine is thermodynamically unstable and 

may decompose into hydrogen, ammonia, and nitrogen [11]. The reaction rate 

is reportedly slow at room temperatures but increases at elevated 

temperatures, particularly in the presence of metals such as copper [14].
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1,1-Dimethylhydrazine decomposition was similar to that of hydrazine [15]. 

Ekshtat [16] observed that hydrazine hydrate decomposed almost completely 

in tap water'in 15 days at an initial concentration of 5 mg/liter and in 25 

days at 10 mg/liter. He indicated that phenylhydrazine behaved similarly, 

but he provided no supporting data.

Vapor-phase autoxidation of 1,1-dimethylhydrazine produces 

formaldehyde dimethylhydrazones, nitrogen, and water as major products and 

ammonia, dimethylamine, nitrosodimethylamine, diazomethane, nitrous oxide, 

methane, carbon dioxide, and formaldehyde as minor products [12], This 

oxidation is accelerated when the substance is exposed to light and when it 

contacts metals and metal salts. Autoxidation of 1,2-dimethylhydrazine is 

rapid and complete, azomethane and water being its major products [12].

Examining the oxidation of methylhydrazine in air, Vernot et al [17] 

found that methylhydrazine kept in a glass tube at a vapor concentration of 

4.6% (v/v) decomposed to molecular nitrogen and methane according to first- 

order kinetics and had a half-life of 34 minutes at 22-24 C. The reaction 

appeared to be surface-catalyzed, since decomposition was essentially 

complete in 10 minutes when polyethylene containers were substituted for 

glass. In a similar study [18], the same major products were identified, in 

addition to minor products such as methanol, ammonia, azomethane, methy1- 

diazine, dimethylamine, formaldehyde methylhydrazone, formaldehyde hydra- 

zone, and dimethyl and trimethyl piperazines. The main products of thermal 

degradation of methylhydrazine and 1,1-dimethylhydrazine were hydrogen 

cyanide, nitrogen, and ammonia [19]. Decomposition of methylhydrazine 

increased rapidly at temperatures over 500 C; 1,1-dimethylhydrazine began 

to decompose at 200-300 C and completely decomposed at 800 C.



Extent of Exposure

Hydrazine, methylhydrazine, 1,1-dimethylhydrazine, and 1,2-

dimethylhydrazine are characterized by a fishy, ammonia-like odor [5,9]. 

These four compounds are clear, colorless, flammable or combustible, 

hygroscopic liquids that are soluble in water, ethanol, and other polar 

solvents [9,11]. Phenylhydrazine has a faint aromatic odor and occurs as 

yellow monoclinic crystals or oil. It is miscible with alcohol, ether, 

chloroform, and benzene, but only sparingly soluble in water [10]. The 

chemical and physical properties of these hydrazines are presented in 

Tables XI-1 through XI-5 [5,9-11,20-22]. Occupations with potential 

exposure to hydrazines are listed in Table XI-6 [11,23].

(a) Hydrazine

Hydrazine is a highly polar, weakly basic, fuming liquid that occurs 

naturally as a product of nitrogen fixation by Azotobacter agile [11]. It 

has been identified in tobacco grown without the use of maleic hydrazide 

[24]. Hydrazine is presently produced commercially by the Raschig and the 

urea processes [11]. The Raschig method involves reacting sodium 

hypochlorite with excess ammonia and then flash-boiling to recover dilute 

hydrazine, which is then fractionated to produce the hydrate. The urea 

process oxidizes urea with hypochlorite to produce hydrazine hydrate 

[2,25]. In 1974, it was estimated that 17,000 metric tons of hydrazine 

were produced in the United States by four companies [25]. It is used as a 

rocket propellant, polymerization catalyst, a blowing agent, a reducing 

agent, an oxygen scavenger in boiler water treatment, in the synthesis of 

maleic hydrazide, and in the manufacture of drugs [5]. NIOSH estimates 

that approximately 9,000 workers are potentially exposed to hydrazine in

26



the United States. In addition, about 89,000 workers are potentially 

exposed to the dihydrochloride salt, 2,500 to the sulfate salt, 1,500 to 

the hydrobromide salt, and 1,700 to the hydrate.

(b) Methylhydrazine

Methylhydrazine is a flammable liquid and can absorb carbon dioxide 

and water from the air [2]. It has been found in a wild edible mushroom 

Gyromitia esculenta [24], and it is commercially prepared from the reaction 

of monochloramine and monomethylamine [26]. About 200,000 pounds of 

methylhydrazine are produced annually in the United States, where it is 

primarily used as a rocket fuel [6]. Small amounts are used as an 

intermediate in organic synthesis and as a solvent [22]. NIOSH estimates 

that approximately 1,000 workers in the United States are potentially 

exposed to methylhydrazine.

(c) 1,1-Dimethylhydrazine

1,1-Dimethylhydrazine is a colorless liquid that fumes in air and 

gradually turns yellow [5]. It is miscible with water, ethanol, ether, 

dimethylformamide, and hydrocarbons. Not found in nature, it is 

commercially produced by the reaction of dimethylamine with chloramine [10] 

or by the reduction of nitrosodimethylamine [10,11]. It is used in rocket 

fuels, in chemical synthesis, and in photographic chemicals and as a 

stabilizer for fuel additives, an absorbant for acid gases, and as a plant- 

growth control agent [22] . About 1-2 million pounds are produced annually 

for use in rocket propulsion. The extent of other uses is unknown. 

According to NIOSH estimates, 1,500 workers in the United States are 

potentially exposed to 1,1-dimethylhydrazine.
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(d) 1,2-Dimethylhydrazine

1,2-Dimethylhydrazine, not found in nature, is a liquid produced in 

small quantities for laboratory use by reducing an azine with lithium 

aluminum hydride, by hydrolyzing alkyl-substituted diazacyclopropanes, or 

by reacting hydrazine with alkyl halides [5,11]. At present, 1,2- 

dimethylhydrazine is not used commercially, but it has been evaluated 

experimentally as a rocket fuel and is used in cancer research to induce 

tumors. The number of workers potentially exposed to 1,2-dimethylhydrazine 

is not known, but it is probably small.

(e) Phenylhydrazine

Phenylhydrazine, a pale-yellow crystal or an oily liquid, becomes 

reddish brown when exposed to air and light. It is produced by reducing 

diazotized aniline and then reacting the product with sodium hydroxide 

[10]. No production figures are available at this time. Phenylhydrazine 

is used in analytical chemistry as a reagent for detecting aldehydes and 

sugars, as an intermediate in organic synthesis, and in the synthesis of 

dyestuffs and pharmaceuticals. NIOSH estimates that about 5,000 workers in 

the United States are potentially exposed to phenylhydrazine.

Historical Reports

Although organic derivatives had been prepared for a number of years, 

the still theoretical compound, hydrazine, was not named until 1875 when 

Fisher succeeded in isolating the phenyl derivative [11]. Hydrazine 

sulfate was first prepared by Curtius in 1881, but anhydrous hydrazine was 

not investigated until 1894 when it was prepared by DeBruyn [11]. Raschig, 

in 1907, developed a synthetic method, since named after him, whereby
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ammonia or urea was oxidized by hypochlorite to produce hydrazine [27]. 

Later, this method was developed on a commercial scale, and it is widely 

used for the synthesis of hydrazine. In World War II, the Germans used 

hydrazine as a torpedo propellant and later as a jet fuel [2]. Following 

the war, the hydrazines were first used as rocket fuels in the United

States. At present, hydrazine alone, or as a 1:1 mixture with 1,1- 

dimethylhydrazine, is used as a fuel for Titan II missiles; the mixture is 

the more commonly used rocket fuel [2], Methylhydrazine has been used in 

the Apollo service module [2] and in missiles [28] as a fuel.

The toxic properties of hydrazine have long been recognized. Clark

[29] stated that a report by Curtius published in 1887 described the effect

or "attack" of hydrazine vapor on the membranes of the nose and throat. 

Another report, prepared by Loew in 1890 and cited by Clark [29], indicated 

that small quantities of hydrazine could kill plants, fungi, lower animals, 

and mammals.

In 1908, Underhill and Kleiner [30] reviewed studies of others

showing that hydrazine sulfate injected subcutaneously (sc) at 100 mg/kg 

into starved dogs caused vomiting, restlessness, cardiac and breathing 

difficulties, coma, and death within a few days of administration. 

Protein, bile pigments, and allantoin crystals were found in the dogs' 

urine, and the liver appeared to have fatty degeneration. In their own 

experiments on well-fed dogs, Underhill and Kleiner found that the 

allantoin crystals were related to starvation, not to hydrazine sulfate 

administration. Microscopic examination of the organs of these dogs showed 

fatty degeneration of the cytoplasm of the liver cells, even though most
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functions of the liver were still normal [31] . Changes in other organs 

were not found.

In 1911, Underhill [32] examined blood samples of dogs given an sc 

injection of hydrazine sulfate. At 50 mg/kg, hydrazine sulfate reduced the 

blood glucose content and at 100 mg/kg it was lethal. Similar 

administration of hydrazine sulfate at 50 mg/kg to rabbits produced 

inconclusive evidence of hypoglycemia [32] . Underhill and Hogan [33] found 

that, though the blood glucose content in rabbits was reduced by hydrazine 

sulfate at doses of 65-85 mg/kg, the time necessary to induce the maximum 

effect and the resultant blood sugar content were inconsistent with the 

dose. The hypoglycemic effect caused by hydrazine derivatives was not as 

pronounced as that caused by hydrazine [34] . A rabbit injected sc with 

methylhydrazine at 50 mg/kg died within 24 hours; death was preceded by 

convulsions, tremors, and paralysis. However, at 25 mg/kg, methylhydrazine 

was nontoxic to another rabbit. Methylhydrazine at a dose of 35 mg/kg 

injected sc into a dog decreased the blood glucose content to 0.11% in 48 

hours. At 50 mg/kg, phenylhydrazine caused no toxic signs in another dog. 

However, a large amount of methemoglobin was found in the urine, and the 

blood glucose content was elevated.

Bodansky [35], in 1924, studied the effect of hydrazine and its 

derivatives on the liver of dogs. Hydrazine injected sc at 28.2 mg/kg 

caused impaired fructose tolerance in 2 days, and an additional injection 

of the same amount on the 3rd day produced death. Hydrazine sulfate was 

similarly tested. After a total dose of 104 mg/kg, equivalent to about 26 

mg/kg of hydrazine, had been given in six sc injections, lowered fructose, 

glucose, and galactose tolerance were observed. Fatty changes of the liver
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were observed grossly, and extensive fatty degeneration with small areas of 

necrosis of the liver cells was found microscopically in these dogs. 

Necrotic changes were also found in the kidney cortex. Bodansky also gave 

phenylhydrazine hydrochloride to a dog at a total dose of 61 mg/kg in four 

sc injections in 4 days and found impaired fructose, dextrose, and 

galactose tolerances. A single sc injection of phenylhydrazine 

hydrochloride at 25.4 mg/kg also caused impaired fructose tolerance and an 

82% reduction of erythrocytes in 12 days in another dog. In these dogs, 

the spleen was enlarged, the liver showed fatty changes, and the bone 

marrow was hyperplastic. Microscopically, there were hyperplasia of the 

spleen, pigmentation and extensive degenerative and necrotic changes of the 

liver, and slight fatty changes of the kidney cortex.

A few cases of accidental human exposures to the hydrazines are of 

historical interest. The toxic effect of hydrazine on the eyes was 

experienced by workers in Germany making hydrazine hydrate during World War 

II [29] . The eye injury caused by the hydrazine vapor appeared about 10 

hours after exposure and was described as inflammation, swelling, and 

purulent discharge followed by temporary blindness.

A case of phenylhydrazine-related skin hypersensitivity reported in 

1899 was cited in 1930 by Wright and Joyner [36]. The patient, a research 

chemist, used phenylhydrazine and developed mild eczema. The rash first 

appeared on his fingers and cleared after he rested from work, but it 

returned with increasing severity after he again had contact with 

phenylhydrazine. The cause of the rash remained unknown for a year until 

he spilled phenylhydrazine on his hands, and hives developed over most of 

his body.
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Effects on Humans

There are few controlled studies available on the toxicity of the 

hydrazines in humans. The majority of reports of human exposure involve 

the most widely used compound, hydrazine. No report on human exposure to

1,2-dimethylhydrazine was found and no epidemiologic studies were available 

for any of the hydrazines. There have been many investigations of the 

toxicity of hydrazines in experimental animals; these are reviewed in the 

Animal Toxicity section.

(a) Hydrazine

The odor threshold of humans to hydrazine was determined by Jacobson 

et al [20] in 1955. An osmoscope was used to expose 15 subjects to 

hydrazine at various concentrations that were prepared in a chamber. The 

lowest concentration detected by any subject was recorded, and the median 

detectable concentration was reported to be 3-4 ppm. The osmoscope is a 

device that enables volunteers to inhale a measured amount of desired 

atmospheres. The device allows serial dilutions of an atmosphere from a 

chamber, the dilutions normally differing by a factor of 2. Human subjects 

sniff various concentrations, usually at increasing concentrations to avoid 

encountering odor fatigue, until they just detect an odor. Because of the 

amount of osmoscope surface involved in the passage of test atmospheres, 

surface sorption of airborne substances can occur and the concentrations 

delivered may be lower than calculated, especially when dealing with 

chemically active substances like the hydrazines. Thus, it may be that the 

reported thresholds for odor detection based on osmoscope tests are higher 

than the true values.
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Gardenghi [37], in 1952, described a case of eczema in a 21-year-old 

woman who worked in a department where p-acetylaminobenzaldehyde 

thiosemicarbazone was prepared. Before coming to this department she had 

no skin disorders, but about 20 days after being transferred, she developed 

a diffuse pruritus, and a few days later, acute suppurative eczema of the 

exposed skin. She was treated and 1 month later, apparently cured, she 

returned to work, but a few days later she again developed severe eczema. 

Skin tests revealed that the patient was allergic to hydrazine sulfate, an 

intermediate used in the synthesis. Since the patient was not allergic to 

the product or any of the other intermediates, the author considered 

hydrazine to be the causative agent.

In 1959, Evans [38] described the development of dermatitis on the 

hands of two workers after they had handled hydrazine hydrate 

intermittently for about 5 months. The rash on the first worker developed 

on the back of both hands and between his fingers and consisted of many 

small vesicles, some of which had ruptured and formed small crusts. 

Fissures were noted on the fingers. The worker stated that this was the 

fourth time that he had developed dermatitis after handling hydrazine. He 

was treated and had no further contact with hydrazine for 10 days. After 

returning to work, the worker inadvertently came into contact with 

hydrazine hydrate again. Within 7 hours, irritation developed in his 

fingers and the rash recurred by the following morning.

The second worker also developed a rash after handling hydrazine 

hydrate [38]. When seen 2-3 weeks later, he had several blisters on his 

fingers. He had previously experienced a similar condition after using 

hydrazine hydrate. The author mentioned that neither worker showed any
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signs of systemic toxicity. Evans conducted a test to detect the presence 

of hydrazine on the fingers of these two workers. The fingers of the first 

worker still had traces of hydrazine 1 day after contact, in spite of what 

was described as normal washing.

Schultheiss [39], in 1959, described a case of allergic eczema in a 

61-year-old laboratory aide. Examination of the patient showed 

erythematous, papular eczema with the beginning of exfoliation on the 

fingers and backs of the hands and at the bend in the wrist. The patient 

had contact with hydrochloric acid, hydrazine hydrate solution (15%), 

trisodium phosphate, and protective rubber gloves.

An allergy test was performed on the patient's skin to determine the 

causative agent [39]. Schultheiss found that the patient was 

hypersensitive to hydrazine hydrate (0.015%), moistened rubber gloves, 

isonicotinic acid hydrazide, potassium dichromate (0.5%), chromium (III) 

chloride (0.5%), and nickel sulfate. The author assumed that the patient 

was allergic to the tetramethylthiuram disulfide used as a vulcanization 

accelerator in producing rubber gloves. The positive skin test for 

isonicotinic hydrazide indicated a possible cross sensitivity to other 

hydrazines and related compounds.

In 1959, Frost and Hjorth [40] described the increased occurrence of 

eczema (dermatitis) on the hands and forearms of women employed in a 

factory after a new soldering flux containing hydrazine monohydrochloride 

had been introduced. Three workers sought treatment for eczema, and when 

patch-tested with dilute soldering flux, two had positive reactions. The 

plant stopped using the flux after a month, and 4 months later, 12 of 34 

exposed women recalled that they also had skin irritation when the new flux
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was used. Patch tests using 1% hydrazine sulfate were subsequently 

performed on these 12. After 48 hours, six showed a positive reaction and 

five had negative reactions; a twelfth woman had an inconclusive test.

In 1965, Wheeler et al [41] reported a case study of contact 

dermatitis in workers exposed to hydrazine hydrobromide solder flux. 

During 6 years, 35 solderers (approximately half of the total workforce) 

developed contact dermatitis. Results of patch tests with solder flux on 

five employees using the solder flux were positive, while those of three 

unexposed controls were negative. Dermatitis first appeared from 3 weeks 

to several months after initial exposure. The fingers and hands were most 

commonly affected, but dermatitis was also seen on the wrists, forearms, 

eyelids, and face. Skin reactions varied from mild, patchy, dry, scaling 

dermatitis through mild, maculopapular erythema to severe vesiculation and 

edema. Some workers experienced only mild dermatitis restricted to sites 

of greatest contact, while others suffered from severe dermatitis following 

minimal flux contact. Once sensitized, the workers could no longer handle 

items contaminated with the flux. One woman was so sensitive that 

dermatitis developed on her face and arms when she walked through the 

soldering area.

One of the five workers examined returned to work and used protective 

gloves while handling parts contaminated with the solder flux; she 

reportedly had no further problems [41]. The other four workers were 

transferred to jobs with no hydrazine contact.

Reid [42], in 1965, described the case of a sailor who had 

accidentally swallowed "between a mouthful and a cupful" of hydrazine. He 

immediately vomited and lost consciousness. When admitted to the hospital,
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the patient was described as flushed, afebrile, unconscious, and vomiting. 

His pupils were dilated but were central and light-reactive. There were no 

chemical burns of the mouth, and he was able to swallow. Twelve hours 

after admission, he ceased vomiting, his pupils became smaller and diverged 

to the right, and he was sporadically violent. Forty-eight hours later, he 

was treated with pyridoxine. Later, his memory and voluntary movements 

were normal, but he was ataxic and unable to write, although he could draw. 

There was a lateral nystagmus to the right, and his ability to sense 

vibration was lost. Paresthesia was present in his arms and legs. He was 

unable to reproduce with one hand movements imposed on the other. Though 

his condition improved and he was discharged from the hospital 2 weeks 

after the incident, his final condition was not reported.

In 1971, Sotaniemi et al [43] cited a fatality they attributed to 

hydrazine hydrate exposure. The victim was a 59-year-old Finnish worker 

who had handled hydrazine once a week for an unreported number of hours for 

6 months. The man had previously experienced lethargy, conjunctivitis, and 

tremors after he had handled hydrazine. On the day following his last 

exposure, he developed fever, vomiting, and diarrhea. Four days later, he 

also developed abdominal pains and black feces and became incoherent. By 

then, his abdomen was enlarged, and the liver was palpable and tender. A 

chest roentgenogram showed fluid in the chest cavity and lung shadowing. 

Blood counts were normal, but other blood chemistry tests indicated 

elevated bilirubin and creatinine levels. His urine volume was very low 

(200 ml/day) and the urine contained protein and erythrocytes. Treatment 

was given to correct the patient’s fluid balance and the condition of the
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patient improved; but, 12 days later, his condition worsened and he died 3 

days later, 20 days after his last exposure.

An autopsy showed severe tracheitis and bronchitis and the lungs 

filled with exudate [43]. The kidneys were enlarged, and petechiae were 

visible on the outer surfaces. Microscopic examination revealed severe 

tubular necrosis, interstitial hemorrhages, and inflammation indicative of 

toxic nephrosis. The liver appeared to be normal macroscopically, but 

microscopically there were small focal areas of necrosis and granular

cytoplasmic degeneration. Patches of lymphocytes were seen in the portal

areas. The heart was enlarged and the myocardium was discolored. 

Microscopic examination showed nonspecific muscle fiber degeneration and 

hyperemia.

Based on other investigators' findings in animals, Sotaniemi and 

coworkers [43] considered the damage to the lungs, liver, and kidneys to be 

the result of hydrazine poisoning. The patient's work environment was 

simulated, and the hydrazine concentration in the air was found to be 0.071 

mg/cu m, but no other details were given. Although the death of this 

worker does appear to be related to hydrazine exposure, the actual exposure 

condition or the presence of other compounds was not reported by the

authors. Dermal exposure may also have been a significant factor

contributing to the toxic effects of hydrazine. If so, the death can 

hardly be correlated with the simulated hydrazine concentration in air of 

0.071 mg/cu m.

Hydrazine and its salts will produce skin irritation and allergic 

reactions in humans. It also appears that the hydrate [38,39] and the mono

hydrochloride [40], sulfate [37], and hydrobromide [41] salts are irri
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tating to the skin. Other effects on humans have not been adequately 

studied.

(b) Methylhydrazine

The odor threshold of human volunteers to methylhydrazine was 

determined by Jacobson et al [20] using the method described for hydrazine. 

The median detectable concentration by odor for 22 persons tested was 1-3 

ppm.

In 1970, MacEwen et al [44] evaluated the adequacy of the 

methylhydrazine Emergency Exposure Limit (EEL) of 90 ppm (162 mg/cu m) for 

10 minutes for rocket fuel manufacturing and handling personnel. The 

primary effects looked for were tearing and bronchospasms. The group of 

seven male volunteers, aged 23-44 years, contained blacks and whites; 

nonsmokers, former smokers, and heavy smokers; and professional and 

technical workers. They were given pretest physical examinations, 

including a neurologic evaluation, pulmonary function tests, hematologic 

studies, and 16 blood chemistry tests. Each subject was exposed for 10 

minutes by inserting his head through a rubber diaphragm into a chamber 

containing 90 ppm of methylhydrazine and was monitored for 60 days 

thereafter.

None of the subjects developed excessive tearing or bronchospasms 

during exposure, but most had increased moisture in the eyes without 

overflow tearing, and some had slight redness in the eyes [44] . Most 

subjects felt a slight tickling sensation of the nose. All clinical 

chemistry test results were normal. The only hematologic abnormality was 

the presence of Heinz bodies in 3-5% of the erythrocytes by the 7th day. 

No signs of anemia or reticulocytosis were observed, and the number of
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Heinz bodies decreased in the next week and disappeared in 60 days. There 

were no significant changes in ventilatory capacity in six subjects; one 

subject had a respiratory infection, and his lung volume began to increase 

to the baseline value a week later. MacEwen et al concluded on the basis 

of these results that an EEL of 90 ppm for 10 minutes was adequate. It 

should be noted that in recommending EEL's, some reversible irritation or 

intoxication is accepted, and these limits should not be considered to be 

effect-free.

In 1973, George [45] examined the effects of methylhydrazine, in 

vitro, on human erythrocytes. Being a reducing agent, methylhydrazine 

caused characteristic oxidative damage to the erythrocytes, such as 

formation of Heinz bodies, production of methemoglobin, and a decrease of 

reduced glutathione. All these effects were related to the methylhydrazine 

concentration in the incubation medium and the length of exposure. For 

instance, Heinz bodies were found in about 20% of the erythrocytes 

incubated in a medium with a methylhydrazine concentration of 4.6 mg/liter 

in 24 hours, while 95-100% of the cells exposed to methylhydrazine at 460 

mg/liter had one to nine Heinz bodies in 1 hour. The maximum concentration 

of methemoglobin increased from 15% (at 46 mg/liter after 90-120 minutes) 

to 36% (at 460 mg/liter after 30-60 minutes). The reduced glutathione 

level in erythrocytes incubated with methylhydrazine at 461 mg/liter 

decreased with time and was almost completely depleted in 4 hours; when 

glucose was added to the medium, however, the glutathione level decreased 

only in the first 2 hours and returned to the baseline value in 4 hours. 

Morphologic changes were noted in the erythrocytes exposed to
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methylhydrazine. The changes included altered configuration and a loss of 

the central concavities of the cells.

Fortney and Clark [46] also examined the effect of methylhydrazine on 

the in vitro formation of methemoglobin. Human erythrocytes were incubated 

in media containing methylhydrazine at concentrations of 1.25, 2.5, and 5.0 

millimoles/liter. Methemoglobin concentrations were found to be 10.2, 

19.4, and 23.7%, respectively, 1 hour after incubation. The effects of 

other hydrazines were compared at a concentration of 5 millimoles/liter, 

and the methemoglobin concentrations were 0.5, 0.3, 8.2, and 12.2% for 

hydrazine, 1,1-dimethylhydrazine, 1,2-dimethylhydrazine, and phenyl- 

hydrazine, respectively.

Leahy [47] compared the in vitro methemoglobin formation caused by 

methylhydrazine in blood samples of different species and reported that the 

equilibrium concentration of methemoglobin in human blood was higher than 

that in the blood of rats and monkeys. However, the amount of 

methemoglobin formed in human blood was lower than that in canine blood. 

Details of this study are presented in the Animal Toxicity section.

(c) 1,1-Dimethylhydrazine

Jacobson et al [20], in 1955, reported that the median concentration 

at which 1,1-dimethylhydrazine was detectable by odor by 16 volunteers was 

6-14 ppm.

In 1970, Rumsey and Cesta [48] reported the results of a study of the 

odor threshold for 1,1-dimethylhydrazine. Several years of field 

monitoring data of 1,1-dimethylhydrazine concentrations collected during 

fuel transfer operations, in support of various missile programs, were used 

to correlate measured concentrations with the perception of odor as
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reported by those performing the monitoring. A total of 11 personnel 

performed monitoring activities between September 1963 and November 1966. 

In 19 cases odor perception was reported when the vapor detector showed no 

reading at all or a reading of less than 1 ppm. In no case was there an 

absence of odor recorded when there were positive vapor detector readings.

To supplement the field data, a test atmosphere containing either 

dried air or 0.5 ppm of 1,1-dimethylhydrazine was delivered at low velocity 

to the subject's face through a polyethylene tunnel 15 inches long and 7.5 

inches in diameter [48]. Nine office personnel were tested, and all 

reported perceiving an odor when 1,1-dimethylhydrazine was present. None 

detected an odor when dried air was tested alone. In a subsequent test, an 

adequate amount of 1,1-dimethylhydrazine was evaporated in an office with a 

volume of 32,000 cu ft. The office personnel were not given prior notice 

and their spontaneous responses were solicited immediately after entry. 

All 11 persons who entered the room containing 1,1-dimethylhydrazine 

detected an odor. The concentration range was 0.2-0.3 ppm. None of the 10 

persons who entered the room lacking 1,1-dimethylhydrazine detected an 

odor.

Rumsey and Cesta [48] concluded that the odor threshold for 1,1— 

dimethylhydrazine was less than 0.3 ppm. This is probably a more accurate 

representation of the threshold than the 6-14 ppm determined with the 

osmoscope.

In 1957, Shook and Cowart [49] reported that, in five laboratory 

workers (chemists, engineers, and technicians) and six storers and 

handlers, all of whom were exposed to 1,1-dimethylhydrazine, there were
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several instances in which positive cephalin flocculation tests were 

observed in a 6-month period. One worker also had a positive thymol 

turbidity test and one exhibited abnormal erythrocyte and leukocyte counts 

and had casts in his urine.

The laboratory workers were exposed intermittently to 1,1- 

dimethylhydrazine in small quantities for 10 hours/day, 6 days/week, for 

the first 3 months and 6-8 times for no more than 4 hours/week for the next 

3 months [49] . The other workers were exposed 3-4 days every few weeks 

while loading and transferring the substance outside. An accidental spill 

occurred after about 3 months, but no workers showed signs of acute 

toxicity. However, the extent of exposure to 1,1-dimethylhydrazine or to 

other toxic chemicals was not discussed for either group.

Members of the Danish Air Force who worked with liquid rocket 

propellants received physical examinations and several laboratory tests, 

including SGPT activity, 3-4 times a year [50]. The concentrations of 1,1- 

dime thy lhydrazine to which these men were exposed were unknown. From March 

1961 to January 1964, SGPT activity was elevated at least once in 47 (4%) 

of 1,193 persons examined. Liver biopsies were performed on 26 volunteers. 

Of these 26 persons, 6 had slight-to-pronounced fat in the liver and 5 had 

uncertain tissue changes, including 4 with fatty degeneration in a few 

cells and 1 with slight lymphocytic infiltration. At the time of biopsy, 

SGPT's were elevated in all six persons with fat depositions in the liver. 

SGPT's were normal in 14 of the other 15; the abnormality in the 15th was 

attributed to alcohol consumption. Thus, a weak correlation between the 

microscopic findings and SGPT activity at the time of biopsy was found. 

There was no followup of these workers, and it was not possible to confirm
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that the hepatic effects resulted from exposure to 1,1-dimethylhydrazine. 

However, other conditions known to cause liver damage were ruled out.

These two studies [49,50] suggest that liver damage in humans is a 

possible effect of 1,1-dimethylhydrazine exposure, but the findings 

reported were not unexpected in otherwise healthy individuals. Thus, it 

cannot be concluded definitely that 1,1-dimethylhdyrazine causes liver 

damage in humans.

(d) Phenylhydrazine

Phenylhydrazine hydrochloride was used in 1908 to induce experimental 

anemia in animals and was first used clinically to induce hemolysis in the 

treatment of polycythemia vera (a disease of abnormally high erythrocyte 

counts) in 1918 [51]. Generally, phenylhydrazine hydrochloride was given 

orally until a total dose of 3-4 g had been administered, or less was given 

if hemolysis was already evident [52]. In a few early cases, thrombosis 

occurred during excessive hemolysis, but it apparently was not caused by 

phenylhydrazine hydrochloride alone [51]. Later, thrombosis was controlled 

by excluding patients with vascular abnormalities, the very old, and those 

confined to bed and by carefully adjusting the dose. Treatment with 

phenylhydrazine was later replaced by the use of more effective drugs or 

therapy [53].

In addition to the case described in Historical Reports, Wright and 

Joyner [36] reported a case they had observed of skin hypersensitivity to 

phenylhydrazine hydrochloride. The patient was in contact with a mixture 

of phenylhydrazine hydrochloride and sodium acetate. Initially, pruritus 

developed on his thumbs and on the left index finger. This later 

progressed to severe swelling of the fingers, vesicle formation, and

43



desquamation on the hands. Skin tests revealed that the patient was 

sensitive to both phenylhydrazine hydrochloride and the mixture, though not 

to the phenylhydrazine base.

In 1937, Downing [54] reported a case of dermatitis in a rubber mill 

worker who came into contact with a new mixture containing zinc chloride 

and phenylhydrazine. Initial contact with the new substance, which lasted 

1 hour, produced no apparent ill effects, but subsequent exposure produced 

swelling of the left eyelid, a bloodshot eye, and a rash on both hands and 

arms. When he used this mixture again, he was forced to stop work because 

of swelling of his eyes, face, hands, and forearms. Later, lesions 

appeared on his face and hands. Physical examination revealed impetiginous 

lesions on the left side of his nose and on the back of both hands, which 

were erythematous, edematous, and desquamating. The worker was given a 

patch test with both the dry and moistened powder of the phenylhydrazine- 

zinc chloride mixture. After 24 hours, there were erythematous and 

edematous areas at both application sites. Small blisters also appeared on 

the dry application site. The author concluded that this dermatitis was 

caused by phenylhydrazine. However, zinc chloride has been reported to be 

a skin irritant [10] and may have contributed to the development of 

dermatitis.

The presented data suggest that both phenylhydrazine [54] and its 

hydrochloride salt [36] are possible dermal sensitizers. Of more 

significance, though, in terms of human exposure, is the hemolytic effect 

of phenylhydrazine.
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Animal Toxicity

Although toxic effects such as respiratory tract irritation,

hemolytic anemia, kidney and liver damage, CNS effects, and tumorigenic

effects have been observed in experimental animals given hydrazines, the 

type and severity of the response induced by each hydrazine may be 

different, despite the similarity in molecular structures; therefore, each 

compound will be discussed separately. Relevant literature for each 

compound will be grouped into three areas: systemic effects, metabolism,

and carcinogenicity and effects related to reproduction.

(a) Hydrazine

(1) Systemic Effects

In 1954, Comstock et al [55] described the effects of

hydrazine vapor on rats, mice, dogs, and guinea pigs. Several experimental 

designs were used, from a 6-hour/day, 5-day/week, 6-month exposure to a 

single exposure of 0.5-4 hours. When rats were exposed at several hundred 

mg/cu m for 2-4 hours in 20-liter glass jars, 50% or more died and they had 

pulmonary edema and localized damage of the bronchial mucosa. However, the 

concentrations of hydrazine at which these rats were exposed were in 

question; in similar experiments, nominal concentrations of 16,000-27,000 

mg/cu m were calculated from mass balance, but titration analysis indicated 

only 106-831 mg/cu m. The authors found that 74% of the hydrazine in the 

air was lost in an empty jar, but 96-99% was lost when six rats were placed 

in the jar. This loss seemed to be largely or entirely caused by surface

sorption.

To minimize the adsorption of hydrazine by the walls, the authors 

then used a 440-liter chamber, and only analytical concentrations were
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reported [55]. Of 20 rats and 10 mice exposed at 295 mg/cu m, 6 hours/day, 

5 days/week, 16 rats and 8 mice died (80% mortality) in the 1st week of 

exposure. Fatty degeneration of the liver was found, in addition to 

pulmonary changes similar to those mentioned above. Of the 16 rats and 10 

mice exposed at 70 mg/cu m, 70-87% mortality was reached after 3 weeks of 

exposure (13 exposures). Of the animals exposed at 26 mg/cu m for 6 weeks, 

7 of 10 mice died by the 14th exposure and the rest survived, and 11 of 13 

rats died by the end of exposure. For the 6-month study, a 1,000-liter 

chamber was used. Four dogs, 30 rats, 20 mice, and 10 guinea pigs were 

exposed at 18 mg/cu m. By the end of the experiment, 2 dogs, 23 rats, 15

mice, and 8 guinea pigs had died. Necropsies on surviving dogs revealed

lipid deposition in the spleen and Kupffer cells of the lobular zone of the 

liver. Two of the dogs also had evidence of anemia. Necropsies on 

surviving mice showed no abnormalities. No necropsies were performed on 

the other animals. In addition, 2 dogs and 20 rats were exposed at 6 

mg/cu m for 6 months. While two rats died, the dogs survived but had toxic 

signs such as loss of appetite, loss of body weight, vomiting, irregular 

breathing, fatigue, and tremors. From these tests, the authors [55] 

suggested that the maximum allowable concentration for hydrazine should be 

lower than 6 mg/cu m.

The acutely toxic effects of hydrazine and some derivatives were 

studied by Jacobson et al [20] in 1955. Rodents exposed to hydrazine were 

restless, and they had breathing difficulties, convulsions, and 

exophthalmos. Most of the convulsions were clonic, but some were tonic-

clonic. The LC50 values for rats and mice were 570 ppm (750 mg/cu m) and

252 ppm (330 mg/cu m), respectively.
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Haun and Kinkead [56], in 1973, reported a 6-month inhalation study 

of hydrazine. Four experimental groups and a control group were used, each 

containing 8 male beagle dogs, 4 female Rhesus monkeys, 50 male Sprague- 

Dawley rats, and 40 female ICR mice. The experimental groups were exposed 

to anhydrous hydrazine for 6 months at a concentration of 1 or 0.2 ppm 

continuously, or at 5 or 1 ppm intermittently. Continuous exposure was for 

24 hours/day, 7 days/week, and intermittent exposure was for 6 hours/day, 5 

days/week. Therefore, the corresponding products of the exposure 

concentration and the duration of exposure are 168 or 33.6 ppm-hours/week 

and 150 or 30 ppm-hours/week.

The authors [56] observed that mortality and weight changes were 

dose-related, regardless of whether exposure was continuous or 

intermittent. Exposure at 150 or 168 ppm-hours/week caused 35-40% 

mortality in mice within 2 months, while exposure at 30 or 33.6 ppm- 

hours/week caused only 2.5-7.5% mortality. No monkeys died and the one rat 

death was not attributed to hydrazine. Two of the eight dogs exposed at 

168 ppm-hours/week died after 16 weeks; there were no other deaths in dogs.

Rats showed a dose-related growth rate depression [56] . At the end 

of exposure, the largest weight difference, 35 g, was found between the 150 

ppm-hours/week group and the controls. Weight loss in dogs occurred only 

in the groups exposed at 150 and 168 ppm-hours/week, and the four dogs 

retained after exposure recovered their lost weight in 2 weeks.

Results of clinical chemistry tests and blood cell counts in monkeys 

and rats were reported to be normal [56]. After 8 weeks of exposure, 

reductions in the hematocrit value, hemoglobin concentration, and 

erythrocyte count of 11, 16-22, and 10-12% respectively, were observed in
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the dogs exposed at 150 and 168 ppm-hours/week. Although, there was a 

tendency toward recovery, no value reached normal by the end of exposure. 

All these hematologic values had returned to normal 2 weeks after exposure 

ended. Reticulocytosis occurred in the dogs exposed at 168 ppm-hours/week 

20 weeks after exposure had begun. These dogs also had increased

erythropoietic activity, which was evident in the decreased myeloid- 

erythroid ratios in marrow samples. Blood counts from dogs exposed to

hydrazine at 30 or 33.6 ppm-hours/week were within normal limits. Clinical 

chemistry, Heinz body counts, and methemoglobin concentrations of all 

exposed dogs were within normal limits. Dogs exposed at 150 or 168 ppm- 

hours/week began to show increased resistance to osmotic hemolysis in the 

erythrocytes at 8 weeks. Similar effects were observed in dogs exposed at 

30 or 33.6 ppm-hours/week beginning at week 12; these effects continued for 

all groups throughout the rest of the exposure period.

Gross and microscopic examination of the tissues of the mice from all

exposure levels showed moderate to severe fatty liver changes, which the

authors considered to have been the cause of death in those mice dying 

during exposure [56] . Exposed monkeys had slight to moderate fat 

accumulation in the liver, but the controls also had some degree of fatty 

changes. In dogs, only those exposed at 150 or 168 ppm-hours/week had 

fatty degeneration of the liver. There were no significant changes in 

rats. Organ weights of the exposed rats, monkeys, and dogs did not differ 

significantly from those of the controls.

Haun and Kinkead [56] concluded that, if humans are not less 

sensitive than the mice, a Threshold Limit Value (TLV) of 1 ppm would not 

be safe.
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As part of a series of experiments with hydrazine, Thienes and 

coworkers [57], in 1948, described the effects of contact application to 

the skin and eyes of animals. Anhydrous hydrazine applied in a petrolatum 

well to the shaved bellies of a rat (2 drops) and a guinea pig (3 drops) 

caused death in 2 hours. Three rabbits had 3 ml of hydrazine applied

through a cloth onto a shaved area of the belly for 1 minute. In two

rabbits, one of which was anesthetized, the bellies were washed with water 

after the cloth had been removed; in the third, no effort was made to

remove the hydrazine. Two rabbits died at 60 and 90 minutes after

application. The anesthetized rabbit survived and within 2 hours, the 

affected skin first reddened, then turned blue, eventually turning brown 

with a dry, burned appearance. The site of application in this rabbit 

became dry, scaly, crusted, and inflamed before healing. Other rabbits had 

gauze containing 3 cc of 5-25% hydrazine applied to their bellies. When 

the gauze was left in place for 1 hour, only the 25% solution caused slight 

skin irritation; this 25% solution applied for 4 hours was lethal to two of 

three rabbits. When 0.2 cc of anhydrous hydrazine was applied in a cloth 

band over the shaved belly of two rats, they died even though the band was 

removed after 1 minute and the area washed.

One drop of anhydrous hydrazine permanently damaged the eyes of rats 

and rabbits when no effort was made to remove it [57]. When 1 drop of 

diluted hydrazine was placed on the eyes of rabbits six times at 10-minute 

intervals, permanent damage resulted with solutions of 25% or greater. At 

1% or lower, there was no visible reaction.

Rothberg and Cope [58] measured the acute toxicity of several 

hydrazines by the intravenous (iv) and percutaneous routes. Rabbits were
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injected iv and observed for 24 hours. Each hydrazine compound was applied 

to a 100-sq cm clipped area on the backs of guinea pigs and rabbits. The 

animals were protected from inhalation of the compound, but the site of 

application was not covered. Hydrazine (3 jul) was also placed in the left 

eyes of two rabbits, and the eyes were examined for damage for 10 days. 

The LD50 by the iv route was 26 jul/kg (26 mg/kg). By percutaneous 

absorption, it was 93 mg/kg in rabbits and 190 mg/kg in guinea pigs. 

Following application of hydrazine, the skin at the site turned bluish- 

black. After 24 hours, the discoloration penetrated deeply into the 

dermis, and there was acute local inflammation and moderate edema. By 72 

hours, this area had eroded into the subcutaneous tissue and the 

surrounding area was mildly erythematous and moderately edematous. 

Hydrazine in the eyes caused corneal damage. Conjunctivitis and erythema 

of the eyelids occurred at 48 hours and were followed by a slight corneal 

opacity that persisted throughout the 7-day observation period.

In 1972, Smith and Clark [59] described the effect of hydrazine 

absorbed through canine skin. Hydrazine at concentrations of 3-15 

millimoles/kg (96-480 mg/kg) was applied to a 15- x 20-cm shaved area on 

the chest of 25 anesthetized mongrel dogs. The appearance of the skin and 

signs of toxicity were noted for 6 hours. Hydrazine and glucose 

concentrations in the blood and urine and reduced glutathione and 

glutathione peroxidase activity in the erythrocytes were measured at 

specific intervals. Preexposure measurements were made, and the animals 

served as their own controls.

When hydrazine was applied to the skin, a chemical burn developed 

[59]. Ten of the 25 dogs died; the time of death, but not the percentage
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dying, was dose-related. Hydrazine was detectable in the blood within 30 

seconds after application; the concentration increased to a plateau at 20- 

60 minutes. The concentration of hydrazine in the urine was variable and 

did not correlate with blood levels. Blood glucose concentrations were 

elevated initially, but they then declined to subnormal values. There was 

no effect on reduced glutathione or glutathione peroxidase activity.

The authors [59] noted the rapidity with which hydrazine was absorbed 

through the skin. They also commented that about one out of three dogs was 

a "hyperresponder," exhibiting plasma hydrazine concentrations 2-4 times 

those of the others.

In 1965, Patrick and Back [60] reported the toxic effects of repeated 

injections of hydrazine on Sprague-Dawley rats and Rhesus monkeys. Groups 

of 25 male rats, weighing 308-386 g each, received 10 or 20 mg/kg of 

practical grade hydrazine (64% hydrazine) intraperitoneally (ip) daily, 5 

days/week, for 5 weeks. Five control rats received no injections, and 10 

others received distilled water ip. Up to five animals from each dose 

regimen were killed each week to evaluate progressive tissue changes. Ten 

rats that received 20 mg/kg daily died between the 8th and 21st injections; 

all others survived. When blood samples were examined, the major finding 

was an elevated SGOT activity in both groups of experimental rats. In the 

25 rats given 20-mg/kg, gross examination showed severe pulmonary 

congestion and edema in four rats. Microscopically, slight hepatic cell 

vacuolization was observed in seven animals. The 10-mg/kg group was 

normal.

Six Rhesus monkeys received hydrazine ip at 5 mg/kg/day for 5 

days/week for 4 weeks; two of these monkeys subsequently received 10
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mg/kg/day for 8 additional days and then 20 mg/kg for 4-5 more days [60]. 

Six other monkeys received 20 mg/kg/day of hydrazine ip for 4-5 days. 

There were no clinical signs of toxicity in the four monkeys that received 

hydrazine at 5 mg/kg/day for 20 doses. All monkeys, however, lost between 

0.4 and 0.9 kg, and they did not regain their initial weights by the end of 

the experiment. Seven of eight monkeys that received hydrazine doses of 10 

mg/kg or more vomited and showed signs of lethargy and weakness; one animal 

developed tremors. At the 5-mg/kg dosage level, only slight decreases in 

hematocrit value and hemoglobin concentration were observed. In the 

monkeys that received 20 mg/kg of hydrazine for 4 or 5 days, the terminal 

SGOT activity increased 3- to 200-fold, but plasma glucose levels were 

insignificantly increased. Grossly, the liver was uniformly pale and 

slightly enlarged in all animals receiving hydrazine at 20 mg/kg/day. 

Microscopically, the kidneys, heart, skeletal muscles, and liver showed 

pronounced fatty changes. One animal that received twenty 5-mg/kg doses 

showed moderate amounts of lipid deposition in the liver and kidneys, and 

three had lipid deposition in the myocardium. Monkeys that received doses 

of hydrazine from 5 to 20 mg/kg had normal kidneys and hearts and showed 

less accumulation of lipids in the liver than did animals that received 

four to five doses at 20 mg/kg/day. The authors concluded that the major 

toxic effect of injected hydrazine was lipid accumulation in the liver. It 

was noted that monkeys were more susceptible to liver and kidney damage 

than were rats, as reflected by more lipid accumulation and higher SGOT 

activities in the former.

In 1966, Wong [61] described changes in renal function in 

anesthetized mongrels for up to 4 hours after the iv injection of
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hydrazine. Eight fasted females weighing 12.5-21.0 kg and six control dogs 

were given creatinine and glucose by sustained infusion and urine was 

collected by catheterization. In controls, creatinine clearance was 

measured every 20 minutes for 5 hours. In the experimental group, three 

baseline values were obtained, then 20 mg/kg of hydrazine was given iv and 

20-minute urine samples were collected for the next 4 hours.

The average creatinine clearance and glucose resorption rates in the

controls remained relatively constant throughout the test period, ranging

from 52 to 57 ml/minute and from 150-170 mg/minute, respectively [61]. In

the experimental group, both creatinine clearance and glucose resorption

rates were lower than controls and declined throughout the test period. 
%

For example, creatinine clearance rates were 48 ml/minute at 20 minutes, 38 

at 120 minutes, and 30 at 240 minutes. Glucose resorption rates were 150 

mg/minute at 20 minutes, 120 at 120 minutes, and 90 at 240 minutes. These 

results, indicative of impaired proximal tubular function, suggested a 

nephrotoxic effect to the author.

Effects of hydrazine and several derivatives on renal function were 

also observed by Van Stee [62] . Anesthetized dogs were injected iv with 

0.50 millimole/kg (16 mg/kg) of hydrazine, and inulin and para- 

aminohippuric acid (PAH) clearance rates and renal plasma flowrate were 

measured. All these indicators of renal function were significantly 

decreased during the first 4 hours after injection. Hydropic degeneration 

of the tubular epithelium of the kidneys was also seen. The author 

concluded that the decreased glomerular filtration rate was caused by the 

decreased renal plasma flow and attributed the decreased PAH clearance rate 

to the decreased glomerular filtration rate and interference with active
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transport by the proximal renal tubular epithelium.

In 1966, Fortney [63] reported the effect of hydrazine on liver

glycogen, arterial glucose, lactate, pyruvate, and acid-base balance. 

Blood and liver biopsies were taken from anesthetized male mongrels that 

had been fasted 12-48 hours and then given hydrazine iv at doses of 25-100 

mg/kg. Control dogs received saline or ammonium hydroxide. Serial blood 

sampling and liver biopsy continued for 6 hours, and then all surviving 

animals were killed.

There was an immediate rise in blood lactate and pyruvate 

concentrations at all doses [63] . The pH rose initially and then 

stabilized in 30 minutes; this transient alkalosis was followed by a slowly 

developing acidosis beginning 3 hours after injection. In the first 1.5-2 

hours, the rise in pyruvate paralleled that of lactate, but by 3 hours the 

ratio was altered and lactic acidosis developed. After 15 minutes, the

rise in lactate and pyruvate was dose-dependent from 25 to 75 mg/kg, but

this effect leveled off above 75 mg/kg. All animals with an initial liver 

glycogen of less than 590 mg/100 g developed hypoglycemia; those with 

higher glycogen levels developed hyperglycemia, with hypoglycemia following 

in 3-5 hours as liver glycogen was depleted. Convulsions appeared 4-5 

hours after hydrazine injection at 25 mg/kg. At 50-100 mg/kg, convulsions 

appeared within 1.5-2 hours. None of these effects was observed in any 

control animal.

Fortney [63] believed that the hyperglycemia, glycogen depletion and 

hypoglycemia indicated a profound change in normal carbohydrate metabolism. 

Similar effects on blood glucose and liver glycogen were also observed by 

Taylor [64].

54



Aleyassine and Lee [65], in 1971, described the effects of hydrazine 

on insulin release. Four groups of six rats each were fasted overnight and 

then given two 1-millimole/kg ip injections of sodium sulfate or hydrazine 

sulfate 45 minutes apart, with or without simultaneous dextrose injection. 

Blood samples were collected 15 minutes after the last injection. Serum 

insulin decreased by 65-74%, both with or without simultaneous injections 

of dextrose, but serum glucose decreased by 35% only in animals not given 

dextrose. Thus, hypoinsulinemia occurred even when glucose levels in the 

blood were artificially elevated.

The authors [65] also conducted in vitro experiments and found that 

the stimulatory effect of glucose on insulin release in the rat pancreas 

was inhibited by hydrazine and that this inhibitory effect was reversible. 

They concluded that hydrazine directly affected the ability of the pancreas 

to secrete insulin. However, the mechanism of the hydrazine-induced 

hypoinsulinemia was obscure.

(2) Metabolism

In 1955, McKennis et al [66] studied the excretion of 

hydrazine and its metabolites. Six male mongrels, weighing 9.5-20 kg, were 

anesthetized with pentobarbital and then given hydrazine sulfate iv at a 

dose of 50 mg/kg. Hourly urine samples were collected for up to 8 hours or 

until the dog died to determine the amount of hydrazino nitrogen present. 

Urine samples collected prior to injection were used to determine baseline 

values. Within the first 4 hours, 5-11% of the injected hydrazine was 

recovered in the urine of five surviving dogs. Four survived 6-8 hours, 

and 12-20% of the nitrogen in the injected hydrazine was found in their 

urine. Excretion of hydrazine in the urine of unanesthetized dogs was also
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studied. Two dogs were given hydrazine sulfate iv and two others received 

hydrazine sulfate sc at a dose of 15 mg/kg. At 5 days, 38.6 and 58.4% of 

the hydrazino nitrogen was recovered in the urine of the dogs given iv 

injections. The other two dogs died after 1.5-2 days, at which time 21.3 

and 29.8% of the hydrazine had been recovered. By reacting the urine with 

benzaldehyde, the authors were able to determine that 82% (range 66-93%) of 

the hydrazino nitrogen was from hydrazine or a simple derivative.

In a followup to the study [66] just discussed, McKennis et al [67] 

also studied the metabolism of hydrazine in rabbits. Unanesthetized 

rabbits were given hydrazine ip at 24 mg/kg. A total of 12.5% of the 

hydrazino nitrogen was recovered in the urine; 18.4% of this hydrazino 

nitrogen (2.3% of the total dose) was identified as 1,2-diacetylhydrazine 

and the rest was hydrazine. Since 1,2-diacetylhydrazine was found to be 

nontoxic at up to 87 mg/kg by ip injection, it was viewed as a detoxication 

product produced by the rabbits. The dogs did not produce this metabolite.

Dambrauskas and Cornish [68], in 1964, reported on the distribution, 

metabolism, and excretion of hydrazine in rats and mice. Male albino Swiss 

ICR mice, 22-30 g, were given hydrazine iv or sc at 40-100 mg/kg. Male 

Sprague-Dawley rats, 330-450 g, were given sc doses of 60 mg/kg. 

Cumulative urine samples from each animal were collected, and after 0.5, 1, 

2, 20, and 48 hours at least three mice were killed. Their carcasses were 

homogenized in a para-dimethylaminobenzaldehyde solution. The amount of 

hydrazine in the solution was then determined spectrophotometrically. In 

rats, blood was collected when the animals were killed and the kidneys, 

spleen, lungs, heart, liver, skin, stomach, intestinal tract, muscle, 

brain, and fat were then removed. Each organ was homogenized separately in
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para-dimethylaminobenzaldehyde for spectrophotometric analysis.

In those mice given hydrazine at 40 or 60 mg/kg, 31-37% was excreted 

in the urine within 20 hours and 47-48% within 48 hours [68]. Only 0.3 and 

1.4% of the 40 and 60 mg/kg doses, respectively, were found in the 

carcasses after 48 hours; no hydrazine was found in the carcasses after 72 

hours. In rats killed 2 hours after injection, 8.4% of the injected 

hydrazine was excreted in the urine [68]. Of the organs analyzed, the 

kidneys had the highest hydrazine concentration, 56 jug/g. The other 

tissues had hydrazine concentrations ranging from 5.5 to 18.6 ng/g, except 

the fat, which contained 0.8 jug/g. Twenty hours after injection, 27.4% of 

the injected hydrazine had been excreted in the urine. The distribution of 

hydrazine in various organs was qualitatively the same, but it was much 

lower than that seen 2 hours after injection.

The authors [68] compared their findings with those of McKennis et al 

[66] in dogs and found that the chemical form and the amounts of hydrazine 

excreted in the urine agreed; no diacetylhydrazine was identified.

Although the distribution of the injected hydrazine was studied in 

detail, more than half of the injected dose was still unaccounted for. It 

appears that metabolites not detectable by para-dimethylaminobenzaldehyde 

were present and that the release of metabolized hydrazine through exhaled 

air should also be investigated.

(3) Carcinogenicity and Effects Related to Reproduction 

Hydrazine was administered to animals in a 6-month inhalation 

study and the systemic effects as reported by Haun and Kinkead [56] were 

described previously. At the end of the exposure period, 10 mice from each 

group were retained for further study, and these results were reported by
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MacEwen [69]. One year after the last exposure, 60-90% of the mice in each 

group were still alive at which time they were killed and examined. There 

were five alveologenic carcinomas, two lymphosarcomas, and one hepatoma in 

six of nine mice (67%) exposed continuously at 1 ppm. Of the group exposed 

at 5 ppm, 6 hours/day, 5 days/week, five of six (83%) had alveologenic 

carcinomas. In the groups exposed at 0.2 ppm continuously and at 1 ppm 

intermittently, three of eight (38%) and two of six (33%), respectively, 

developed alveologenic carcinomas; the incidence was one of eight (13%) in 

the control group. MacEwen commented on the importance of these findings 

in considering an etiologic factor because the incidence of alveologenic 

carcinoma was dose-related and the other tumors observed in experimental 

animals did not occur in controls.

In a series of experiments designed to examine carcinogenicity, one 

investigative group has reported extensively on the effects of hydrazine

sulfate when given by intubation to several animal species, including the

BALB/c and CBA strains of mice. In one study on BALB/c mice [70], 

hydrazine sulfate was administered 150 times in daily doses of 1.13, 0.56, 

0.28, and 0.14 mg. Another group of BALB/c mice also received 1.13 mg 

daily but for a total dose of 32 mg given over 4 weeks. There were 39-51 

mice, apparently equally divided by sex, in each group, including controls. 

The mice were 8 weeks old at the beginning of the experiment. Of the males 

given 1.13, 0.56, 0.28, and 0.14 mg for 150 doses, 90, 65, 62, and 54%,

respectively, developed lung tumors. Eighty-five percent of the males 

receiving a total of 32 mg of hydrazine sulfate also had lung tumors. The

tumor-bearing males in the two groups given 1.13 mg/day died at an average

age of 67-74 weeks, while the other experimental males died at 80-82 weeks.

58



The control males lived to 92 weeks and had a lung tumor incidence of 24%. 

In females given 150 of the aforementioned doses, 90, 76, 89, and 32%,

respectively, developed lung tumors. Females receiving 32 mg had a lung 

tumor incidence of 75%. The average age at death of the females receiving

1.13 mg/day was 74-76 weeks, while the others died at an average age of 84- 

86 weeks. Only 4% of the female controls developed lung tumors and they 

reportedly died around 100 weeks of age. Liver tumors were seen in 8% of 

all mice given hydrazine sulfate at 0.56 mg/kg daily and in 8% of the males 

given 0.28 mg/kg doses. Mice with liver tumors died at an average age of 

88 weeks. Microscopically, the lung tumors were classified as either 

adenomas or carcinomas, while the liver tumors were vascularized 

hepatocarcinomas.

The authors [70] suggested that, although lung tumors were the major 

tumor found, liver tumors would have developed also if the mice had 

survived longer.

Several other studies [71-73] have reported carcinogenic effects in 

BALB/c mice when daily doses of 1.13 mg of hydrazine sulfate were given by 

intubation. When hydrazine sulfate was administered over a 4-week period, 

the tumorigenic effects were nearly identical to those in the group 

described above and all lung tumors were classified as adenomas; however, 

the normal incidence in female controls was 21% [71]. When hydrazine

sulfate was given daily until the animals were killed, the first tumor did 

not appear until the 150th day. By the 200th day, the incidence of lung 

tumors increased to nearly 100% and the number of tumors/tumor-bearing 

mouse increased to a maximum of seven when 350 mg of hydrazine sulfate had 

been given [72], In females given 150 doses, 90% of the intact virgins and



60% of the gonadectomized mice developed lung tumors, 96% of which were 

adenomas [73]. However, all breeders developed lung tumors and 47.2% of 

the tumors were malignant, suggesting to the author that a hormonal factor 

influenced both the induction and malignancy of these tumors.

In 1966, Milia [74] described the tumorigenic action of hydrazine 

sulfate on newborn BALB/c mice. One group of 50 mice, starting at 12 hours 

of age, was given hydrazine by intubation 2-3 times/day in doses increasing 

in proportion to body weight. In 60 days, each mouse had received about 

16.7 mg of hydrazine sulfate, equivalent to 4.15 mg of hydrazine. A second 

group received sodium bicarbonate according to the same schedule, and a 

third group was unexposed. These last two groups of 50 mice each served as 

controls.

Fifty-nine days after the last dose, two mice given hydrazine sulfate 

were near death [74]. They were found to have adenomas of the lungs, and 

an additional 13 mice given hydrazine sulfate and 15 mice from each control 

group were killed for examination of all organs with lesions. While there 

was no evidence of tumor induction in any control animal, the 15 mice given 

hydrazine sulfate had a total of 45 lung tumors. Sixty-two percent of the 

tumors were classified as adenomas, 36% were described as adenomas becoming 

malignant, and 2% were carcinomas.

The induction time for lung tumors in these newborn mice, less than 

17 weeks, was significantly less than that found during other experiments 

in that laboratory [72], although the doses used in the other study were 

much higher. Milia believed that an incidence of three tumors/mouse was 

very high, since mice of such an age usually show no spontaneous lung tumor 

development.
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Biancifiori [75] reported in 1970 on the effect of dose on the 

incidence of hepatomas in CBA mice induced by hydrazine sulfate. Eight- 

week-old mice of both sexes were divided into 5 groups, each containing 40- 

59 animals. In the four experimental groups, each mouse received 1.13,

0.56, 0.28, or 0.14 mg of buffered hydrazine sulfate by gastric intubation

daily for 150 days. Since the mice weighed about 25 g, the daily doses 

were approximately 45, 22, 11, and 5.6 mg/kg. All mice were examined after 

natural death or when killed while moribund. The lungs, liver, and various 

endocrine glands were removed for microscopic examinations.

The percentages of male mice dying with hepatomas were 60, 48, 28, 

and 3.8 in the groups given 1.13, 0.56, 0.28, and 0.14 mg of hydrazine 

sulfate/day, respectively, while corresponding percentages for females were 

62.5, 66.6, 8.0, and 0.0 [75]. Control mice had hepatoma incidences of 

10.0 for males and 3.4% for females. For mice with hepatomas, the average 

age at death was 60-71 weeks at the three highest doses, 80 weeks at the

lowest dose, and 87-90 weeks in the controls. All other mice died at 57-83

weeks of age. Most of the tumors seen were characterized as highly 

vascularized hepatocarcinomas. In the 1.13-mg/day group, there were four 

instances of lung metastases. The author reported that multiple tumors 

were present in the lungs of many of the exposed mice, but he did not 

elaborate on this finding.

Biancifiori [75] found that daily administration of hydrazine sulfate 

at doses of 1.13 and 0.56 mg was carcinogenic to the liver of CBA mice of 

both sexes, while 0.28 mg/day had less carcinogenic activity and 0.14 

mg/day did not cause cancer.

61



Other reports by Biancifiori et al [71,76] provide additional

information on the effects of hydrazine sulfate administered in CBA mice, 

particularly on lung tumor incidence. Twenty-one males and 21 females were 

each given hydrazine sulfate by intubation at a daily dose of 1.13 mg for 

36 weeks starting at 8 weeks of age. Sixteen experimental males (76%) 

developed an average of 3 lung tumors/mouse, and 19 experimental females 

(90%) had an average of 6 lung tumors/mouse. Of the 176 lung tumors, 138 

were adenomas. Five of the adenomas in males and 20 in females were

described as adenomas becoming malignant. Seven tumors in males and six in 

females were classified as carcinomas. In three females, metastasis to the 

lymph nodes was observed. The controls had a 3% incidence of lung adenomas 

in 37 males and 9% in 47 females. In addition, hepatomas were found in 62%
t

of the males (13) and in 71% of the females (15). The spontaneous 

incidence of hepatomas in the controls was 11% in males and 4% in females.

As he had reported for the BALB/c strain of mice [73], Biancifiori 

[77] thought that incidence of lung tumors in CBA mice could be hormonally 

influenced, since with hydrazine sulfate given 150 times at doses of 0.14-

1.13 mg/kg, the lung tumor incidence in females, but not in males, for

virgins was always higher than that for gonadectomized mice.

Another group of investigators, Roe et al [78], reported the

incidence of lung tumors in Swiss mice given hydrazine compounds. A group 

of 25 virgin females was given 0.25 mg of hydrazine by gavage 5 days/week, 

for 40 weeks. Eighty-five mice served as controls. At 40-50 weeks, there 

were 3 tumors in 2 of the 9 mice examined, while 4 mice examined at 50-60 

weeks had a total of 20 tumors. In controls, there were 1 tumor each in 2 

of 37 mice examined at 40-50 weeks and 9 tumors in 6 of 42 mice examined at
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50-60 weeks. The tumors were alveologenic or bronchiologenic adenomas or 

adenocarcinomas. Mice given hydrazine showed a significantly greater 

incidence (P<0.001) of lung tumors than did the controls. The authors 

believed that the appearance of multiple tumors in mice supported the view 

that hydrazine was carcinogenic. They did not describe what happened to 

the 12 unexamined mice.

In 1969, Toth [79] described a study of lung tumor induction and

breast adenocarcinoma inhibition by hydrazine sulfate. Three strains of 

mice, Swiss, AKR, and C3H, were given hydrazine sulfate in drinking water

at a concentration of 0.012% for life starting at 6 weeks of age. For the

Swiss strain, 50 random-bred mice of each sex had an average daily intake 

of hydrazine sulfate of 0.65 mg for females and 0.74 mg for males. A total

of 110 males and 110 females were used as controls. For AKR mice, 40 males

and 40 females were given hydrazine sulfate at an average daily intake of 

0.63 mg. The AKR control consisted of 30 females and 30 males. For C3H 

mice, the average daily intake of hydrazine sulfate was 0.84 mg for 40 

females and 0.98 mg for 41 males. Thirty males and 30 females were kept as 

controls. Complete necropsies were performed on all animals.

In Swiss mice given hydrazine sulfate, 50% of the males and 48% of

the females developed lung tumors at average ages of 73 and 77 weeks [79]. 

Of these tumor-bearing mice, about 72.5% had adenomas, 16% had adenomas and 

adenocarcinomas, and the rest had either adenocarcinomas or squamous cell 

carcinomas. The lung tumor incidences in the controls were 10% in the 

males and 12.7% in the females. In the experimental group, 6% of the males

and 8% of the females had malignant lymphomas, compared with 1.8 and 14.5%

of the controls, respectively. In addition, the breast cancer incidence in
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females was 4% in the experimental group and 8.1% in the control group. A 

number of other tumors, generally only one of each type, were found in both 

groups.

Of the AKR mice given hydrazine sulfate, 33 females (82%) and 30 

males (75%) developed malignant lymphomas [79]. However, 96% (29) of the 

control females and 76% (23) of the control males also developed this type 

of tumor. A few other tumors unrelated to exposure were found. Of the C3H 

mice, 15 females (37.5%) given hydrazine sulfate developed breast 

adenocarcinomas compared with 23 control females (76.6%). In addition, 

four experimental females and two males had lung adenomas.

In 1972, Toth [80] described the effects of long-term ingestion of

hydrazine on randomly bred Swiss mice. The mice, 6 weeks of age at the

start of experiment, were given hydrazine in their drinking water at a 

concentration of 0.001% for life. The average daily consumption of 

hydrazine was 0.056 mg for the females and 0.069 mg for the males. Data 

for the control group, consisting of 110 mice of each sex from a similar 

colony, were obtained previously [79]. Of the 50 females that received 

hydrazine, 27 (54%) developed a total of 47 lung tumors at an average age

of 91 weeks (range 26-119) [80]. The female controls had a lung tumor

incidence of 12.7%. Nine females developed malignant lymphomas (18% 

incidence) at an average age of 92 weeks, compared with 16 in the controls 

(14.5% incidence). Of the 50 males that received hydrazine, 24 (48%)

developed 39 lung tumors at an average age of 97 weeks (range 56-119). The 

incidence of lung tumors in the male controls was 10%. Seven males (14%) 

developed malignant lymphomas at an average age of 77 weeks, compared with 

two tumors in male controls (1.8%). The reported data did not indicate
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whether or not the same animals with lung tumors had lymphomas. 

Miscellaneous tumors were also found in 4.2% of the mice receiving 

hydrazine and in 7% of the controls. Thus, hydrazine administered to mice 

in drinking water at a concentration of 0.001% throughout life increased 

the incidence of lung tumors, but apparently did not increase the incidence 

of malignant lymphomas, at least not in the female mice.

Kelly et al [81], in 1969, compared the carcinogenic activity of

hydrazine sulfate and that of several other hydrazine compounds. Thirty 

male and 30 female offspring of BALB/c x DBA/2 mice (CDF1), 7-8 weeks old, 

were given weekly doses of hydrazine sulfate for 8 weeks. Males were given 

2.6 mg ip injections (about 87 mg/kg) and females were given 5.2 mg oral 

doses (about 200 mg/kg). Control groups of 10 male and 10 female mice were 

given saline. All survivors were killed 33 weeks after the initial 

injection. Necropsy revealed 6 alveologenic carcinomas of the lungs in 6 

males (20%) and 25 similar tumors in 13 surviving females (46%) given 

hydrazine sulfate. In the control groups, 1 of 9 males and 1 of 10 females 

examined had undescribed lung tumors.

There have been several other studies on the carcinogenic effect of

hydrazine or its sulfate salt on mice after ip injection. Hydrazine

sulfate was reported to induce lung tumors in SVJR, and to a lesser degree, 

in C57BL/B mice [82]. However, reticular cell sarcomas in the mediastinum 

and myeloid leukemias were found in another study on hydrazine [83]. Of 

newborn BALB/C mice injected with a total dose of 19 mg of hydrazine 

sulfate, all 20 developed an average of 5 lung tumors/mouse compared with 

only 1 tumor each in 3 of 20 controls [84]. These results agree with those 

found in other newborn mice given hydrazine sulfate orally [74].
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Severi and Biancifiori [76], in 1968, reported the results of a study 

of the carcinogenicity of hydrazine sulfate in Cb/Se rats. Hydrazine 

sulfate was given daily via stomach tube to 14 males at a dose of 18 mg and

to 18 females at 12 mg over 68 weeks starting when the rats were 8 weeks

old. Of these animals, three males (21%) and five females (28%) developed 

lung tumors, classified as adenomas or adenocarcinomas, with induction 

periods averaging 75 and 78 weeks, respectively [76]. No lung tumors were 

found in a control group of 28 males and 22 females. The authors stated 

that, although they originally intended to study the induction of lung 

tumors, they observed that the liver had also been affected. Therefore,

they examined the livers of 13 experimental rats of each sex. Of these,

four males (31%) had hepatic cell carcinomas or sarcomas with an induction 

time of 85 weeks, but no liver tumors were found in females. Because no 

spontaneous liver or lung tumors were found, Severi and Biancifiori 

concluded that hydrazine sulfate was carcinogenic in Cb/Se rats.

In a study of the possible carcinogenic effect of hydrazine sulfate 

[75], 23 golden hamsters, beginning at 8 weeks of age, were each given 60 

doses of 3.0 mg of hydrazine sulfate by intubation for 15 weeks, and 35 

were given 2.8 mg 100 times in 20 weeks. There were 56 controls.

Hepatic lesions were present in 60.8% of the those receiving 

hydrazine sulfate at 3.0 mg/day, in 82.8% of those receiving 2.8 mg/day, 

and in none of the control hamsters [75] . The liver in almost all animals 

with hepatic lesions was small, grayish-yellow, and hard. Cirrhosis was 

confirmed microscopically. The diffuse hepatic lesions were found to be 

associated with an increase in the fibrous connective tissues. 

Reticuloendothelial cell proliferation was found in '85.7-96.5% of the



hamsters receiving hydrazine sulfate. Thirty-one percent of the animals 

that received hydrazine sulfate had bile duct proliferation, and 21% had 

degeneration of the fibrous cells in hyalinized tissues. The incidence of 

liver lesions was similar for both sexes, but there was no evidence of 

tumor induction in either the lungs or the liver.

Toth [85] reported a study in 1972 on the tumorigenic effects of 

hydrazine sulfate on hamsters. Syrian golden hamsters, 50 males and 50 

females, were given drinking water containing 0.012% hydrazine sulfate. 

The experiment started when the hamsters were 9 weeks old and lasted for 

their lifespan. The average daily intake of hydrazine sulfate by each 

hamster was 2.3 mg. All the animals were weighed and checked weekly for 

gross abnormal changes [85]. A concurrent control group was not 

maintained, but data [86] previously obtained from a similar colony were 

used for comparison. Complete necropsies were performed on all animals 

including those that were killed when in poor condition. All organs were 

examined, and microscopic studies were performed on any organ that showed 

gross abnormalities. The author found no detectable tumorigenic effects of 

hydrazine sulfate in hamsters. Although the 8% incidence of polypoid 

adenomas of the cecum was somewhat higher than that of the control group, 

the difference was not statistically significant. Toth pointed out that 

these findings in hamsters agreed with those reported by Biancifiori [75].

There have been several studies investigating the mutagenicity and 

possible teratogenicity of hydrazine. In 1972, Rohrborn et al [87] studied 

the mutagenic potential of hydrazine in a host-mediated assay system. Five 

to six male NMRI mice, 10-14 weeks old, were each injected ip with a broth 

containing Salmonella typhimurium G46 and sc with hydrazine sulfate at
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doses of 3.5, 3.25, or 3.1 mg/kg. The hydrazine sulfate injections were 

repeated after 1 and 2 hours. Seven control animals received only the 

bacteria. One hour after the last hydrazine injection, the animals were 

killed. The mutated and total bacteria within the peritoneal cavity were 

counted, and mutation frequency ratios of the hydrazine-administered versus 

the control animals were calculated. Injection of hydrazine sulfate at 

doses of 3.5, 3.25, and 3.1 mg/kg resulted in mutation frequency ratios of 

362.84, 87.61, and 32.71, respectively. The authors concluded that

hydrazine had a dose-dependent mutagenic potential in a host-mediated assay 

system.

Herbold and Buselmaier [88], in 1976, investigated the mutagenic 

effects of various substances, including hydrazine. Cultures of Salmonella 

typhimurium (strains TA 1535, TA 1536, TA 1537, TA 1538, and G46) were 

incubated in the presence of phenobarbital-activated mouse liver microsomes 

and 0, 0.12, 1.2, and 12 mg/ml of hydrazine. Forty-eight hours later,

revertants were counted and mutation frequencies were determined. 

Hydrazine caused dose-dependent increases in mutation frequency in both the 

TA 1535 and G46 strains. The ratios were 1, 1.42, 2.35, and 9.1,

respectively, for TA 1535 and 1, 3.6, 3.25, and 312 for G46. The authors 

concluded that hydrazine was a mutagen based on the finding in these two 

strains. However, they stated that it was inappropriate to correlate these 

results to the evaluation of mutagenic risks in humans.

A study of the effect of hydrazine on pregnant rats was described by 

Lee and Aleyassine [89] in 1970. Seventy-eight Wistar rats at the 11th day 

of pregnancy were divided into three groups for the experiment. One group 

received hydrazine sc at 8 mg/kg/day for 10 days, the second group received
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hydrazine sc and 200 mg/kg/day of pyridoxine intramuscularly (im) for 10 

days, and a control group received sc injections of normal saline at 2 

ml/kg/day for 10 days. On the 21st day of pregnancy, 11-12 rats in each 

group were killed and examined for surviving and dead fetuses and 

implantation sites. Surviving fetuses were weighed and examined, and 

selected organs of some fetuses were examined microscopically. The 

remaining pregnant animals were observed until they delivered, and the live 

newborn rats were counted 24 hours after delivery.

Repeated injections of hydrazine alone resulted in 2 deaths among 26 

pregnant rats, and 1 death occurred in the 26 that received both hydrazine 

and pyridoxine [89]. No deaths occurred in the controls. Eighty percent 

of the control rats bore litters of 9-18, and all the newborn subsequently 

survived. Of the dams that received hydrazine alone, no offspring survived 

the first 24 hours. Of the dams injected with both hydrazine and 

pyridoxine, 7 of 13 delivered live newborn, but the litter size was usually 

smaller (1-14 animals) than that seen in the controls. These newborn rats 

were very pale and less active than the offspring of the controls. They 

all showed a moderate degree of dehydration. Twenty-nine of these 33 pups 

developed and grew normally through weaning. Of the rats killed on the 

21st day of pregnancy, two or three in each group had no live fetuses. The 

fetal survival rates (total fetal survivors/total implantation sites) were 

37% for rats given hydrazine, 70% for those given hydrazine and pyridoxine, 

and 79% for those given saline. The mean body weights of the surviving 

fetuses were 2.89, 3.44, and 4.70 g for these groups, respectively.

Besides being smaller, the fetuses from the rats that received hydrazine 

were pale and edematous, with occasional petechial hemorrhages. No gross



malformations were observed. Pyridoxine did not improve the appearance of 

the fetuses. Dams given hydrazine during gestation had weight losses 

averaging 40-50 g.

In 1976, Greenhouse [90] reported a study on the effect of hydrazine 

sulfate on the development of South African clawed toad (Xenopus laevis) 

embryos. The toad embryos were cultured in aquatic media containing 

various concentrations of hydrazine sulfate. The medium was changed twice 

every week because of hydrazine degradation, but only initial 

concentrations were reported. Hydrazine sulfate was not toxic or 

teratogenic in Xenopus larvae exposed continuously at initial 

concentrations up to 400 mg/liter, but it was found to be teratogenic at a 

concentration of 40 mg/liter or higher if exposure started prior to 

neurulation completion. Malformations seen included foreshortening of the 

axial skeleton, tail kinks, and edema. If malformed embryos were left in 

hydrazine sulfate solution, they all died, but they survived if transferred 

to freshwater. No data were available on whether gr not these larvae 

metamorphosed.

In an additional study [91] on the teratogenicity of hydrazine, 

clawed toad embryos at the cleavage stage were exposed to hydrazine 

continuously until hatching. At 10 mg/liter, 35% of the embryos were 

malformed; at 25, 50, and 100 mg/liter, all exposed embryos were affected. 

In embryos exposed to hydrazine at 25 mg/liter at different stages of 

development, only those exposed during neurulation and returned to tap 

water by the time they had reached the tail bud stage showed teratogenic 

effects.
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(b) Methylhydrazine

(1) Systemic Effects

In a study of the acute toxicity of hydrazines, Jacobson and 

coworkers [20] found that the toxic signs in rats exposed to 

methylhydrazine were the same as those reported for hydrazine, and the LC50 

values were calculated to be 74 ppm (139 mg/cu m) for rats and 56 ppm (105 

mg/cu m) for mice for single, 4-hour exposures. The LC50 for hamsters was 

reported to be 143 ppm (270 mg/cu m) of methylhydrazine.

Groups of three male dogs were also exposed to methylhydrazine for 4 

hours at 15, 21, or 29 ppm and observed for up to 14 days after exposure 

[20], Necropsies were performed on the dogs, including those killed when 

near death, and blood was obtained before and after exposure.

The dogs exposed to methylhydrazine salivated, vomited, panted, 

choked, and showed incoordinated locomotion and convulsions [20] . At 29 

ppm, two of three dogs died during exposure, and at 21 ppm, two of three 

dogs died the day after exposure. All other dogs survived the 14 days of 

observation, except for one in the 29-ppm group, which was killed on day 2 

for examination. Methylhydrazine exposure caused hemolysis, indicated by a 

24% mean decrease in hematocrit value, a 43% decrease in erythrocyte count, 

and a 41% decrease in hemoglobin content 4 days after exposure. The 

percentage of reticulocytes in the blood increased from a mean of about 4% 

before exposure to about 75% 8 days after exposure. A mild bilirubinemia 

was caused by elevation of the direct-reacting fraction of heme pigments. 

The sulfobromophthalein (BSP) retention in dogs was unaltered by 

methylhydrazine exposure, and the ECG's of the dogs were normal. Moderate 

to marked polymorphonuclear leukocytosis also developed. The hemolytic
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effect was most pronounced 4-8 days after exposure, and blood values 

returned to normal 17-24 days after exposure ended.

In 1969, Haun et al [92] investigated the acute effects of inhalation 

of methylhydrazine in animals. Groups of 10 male Sprague-Dawley rats, 

weighing 125-175 g, and 20 male Swiss mice, weighing 17-23 g, were exposed 

to methylhydrazine for single 30-, 60-, 120-, and 240-minute periods.

Twenty-two beagle dogs were exposed at 92 or 104 ppm for 60 minutes, 180- 

200 ppm for 30 minutes, or 380-400 ppm for 15 minutes. Twenty-five 

squirrel monkeys were exposed at 75-90 ppm for 60 minutes; 130-170 ppm for 

30 minutes, or 300-376 ppm for 15 minutes. Five Rhesus monkeys were 

exposed to methylhydrazine at 160 or 170 ppm for 60 minutes.

The LC50's, calculated for each exposure interval and species of 

animal, are listed in Table III-l [92], The number and severity of toxic 

signs in the rats and mice exposed to methylhydrazine were dose-dependent 

and included nose and eye irritation, diarrhea, frequent urination, rapid 

and labored breathing, intermittent periods of hyperactivity, tonic-clonic 

convulsions, and tremors. The rodents appeared to have died during 

convulsions. Toxic signs observed in the dogs and monkeys were similar to 

those seen in rodents, but the dogs were also incoordinated and cyanotic.

Of the various tests performed on dogs and Rhesus monkeys (blood 

counts, liver and kidney function tests), only the hematologic examination 

showed changes from baseline values [92] . Moderate to severe anemia 

occurred in all surviving dogs, while mild to moderate anemia was observed 

in all surviving monkeys. Decreased hematocrit values and hemoglobin 

concentrations, apparent in both species, were lowest about 7-14 days after 

exposure. Reticulocyte counts increased in both species and peaked 10 days
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after exposure. The authors indicated that the blood taken from the dogs 

was rusty-brown, which, with observed cyanosis, suggested to them the 

possibility of methemoglobin formation. About 35 days after exposure, the 

monkeys had normal blood values, but preexposure levels had not been 

attained 9 weeks after exposure for dogs.

Microscopic examination of tissues from dogs, rats, and squirrel 

monkeys after lethal exposure showed pulmonary congestion with hemorrhage, 

hepatic congestion, and swelling of the renal tubular epithelium [92]. The 

brains of the dogs and monkeys frequently showed subarachnoid hemorrhages. 

Renal damage, ranging from mild swelling of the tubular epithelium to 

vacuolization and coagulative necrosis of tubular epithelial cells, was the 

most common finding in animals killed 60 days after near-fatal doses of 

methylhydrazine. Haun et al observed that the amount of visceral 

congestion and hemorrhage was not sufficient to produce death and that, of 

the species studied, squirrel monkeys were the most sensitive and rats the 

least sensitive to the lethal effects of methylhydrazine.

The LC50’s determined in this study [92] correlate well with those 

determined in the other study [20] . Mild to severe anemia appeared to be 

the major toxic effect on dogs and was observed in both studies.

In 1971, MacEwen and Haun [93] conducted a series of 6-month 

exposures of animals to methylhydrazine at 0.2, 1, 2, and 5 ppm for 6

hours/day, 5 days/week. Another group was exposed continuously at 0.2 ppm. 

Each group consisted of 8 beagle dogs, 4 Rhesus monkeys, 50 Wistar rats, 

and 40 ICR mice. All animals except the rats were female. A series of 15 

clinical chemistry and 8 hematologic tests and body weight measurements 

were conducted every 2 weeks during the study. Surviving animals, except
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one-half of the dogs, were killed for examination at the end of exposure, 

and bone marrow studies were then conducted on the dogs. The remaining 

dogs were held for 30 days after the end of exposure and were examined for 

possible reversibility of toxic effects and recovery time.

Death attributed to exposure occurred only in mice at the two highest 

concentrations, with mortalities of 27% at 5 ppm and 15% at 2 ppm [93]. 

Growth rate depression in rats was observed, but only in the 2- and 5-ppm 

groups was that effect sustained. Long-term effects in dogs and monkeys 

were primarily related to the reaction of methylhydrazine with red blood 

cells. The hemolytic responses were about the same for the 0.2-ppm 

continuous exposure group and the 1-ppm intermittent exposure group, as 

would be expected, since the weekly exposure concentration times, 33.6 and 

30 ppm-hours, were essentially the same. Reductions in erythrocyte counts, 

hemoglobin concentrations, and hematocrit values of 43, 43, and 30%,

respectively, were observed in the dogs exposed to methylhydrazine at 150 

ppm-hours/week compared with 9, 3, and 2% at 6 ppm-hours/week. A twofold 

to threefold increase in methemoglobin occurred in the dogs exposed at 5 

ppm (150 ppm-hours/week). In monkeys exposed at 150 ppm-hours/week, 

decreases in hematocrit values, hemoglobin concentration, and erythrocyte 

counts of 28, 32, and 30%, respectively, were observed. Increased red cell 

fragility was observed in canine blood. The degree of hemolysis, measured 

in 0.6% salt solution, was 2.5% at the 6 ppm-hours/week exposure, 15% at 

150 ppm-hours/week, and 1% in controls. Samples of canine and primate 

blood taken at 3-7 months were found to contain 1-5 Heinz bodies/100 red 

blood cells, and no dose- or species-related effects were found. After the 

exposure ended, the blood cell counts returned to normal in 2-4 weeks.
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Mean bilirubin and alkaline phosphatase values for all groups of 

exposed dogs were statistically higher than control values at all sampling 

periods after 3 weeks of exposure, and dose-dependent effects were evident 

[93]. The increase in total inorganic serum phosphorus was less 

pronounced, but the authors believed that it indicated, along with the 

other two tests, intrahepatic cholestasis from liver damage caused by long

term exposure to methylhydrazine. Data on monkeys were not reported. Bone 

marrow samples from exposed dogs showed a dose-related decrease in the 

myeloid/erythroid ratio with increasing erythropoietic activity.

The authors [93] concluded that methylhydrazine exposure produced 

dose-related hemolytic anemia and Heinz body formation without an apparent 

threshold level and that the anemia was reversible when animals were 

removed from further exposure, at least up to 5 ppm in intermittent 

exposure. As a result of their study, they recommended that the TLV of 0.2 

ppm be reexamined.

Kroe [94] examined selected tissues from the animals used by MacEwen 

and Haun [93]. Tissues from the lungs, heart, liver, spleen, and kidneys 

of all the monkeys and dogs and from 10 rats and 10 mice of each group were 

examined [94]. There were no lesions in the monkeys and rats. Periportal 

hepatic hemosiderosis and cholestasis and proximal tubular hemosiderosis 

were found in the dogs exposed to methylhydrazine at 150 ppm-hours/week. 

Similar hepatic and renal tubular changes were also seen in the dogs 

exposed at 60 ppm-hours/week. Hepatic cholestasis was found in dogs 

exposed at 33.6, 30, and 6 ppm-hours/week. Moderate lymphoid hyperplasia 

was also noted.
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Lung and heart tissues of all exposed mice were normal [94] . The 

livers of mice exposed at 150 ppm-hours/week had centrilobular cholestasis, 

bile duct proliferation, and centrilobular hemosiderosis. The kidneys and 

spleens of the same mice also had hemosiderosis. The liver changes in the 

mice exposed at 60 ppm-hours/week were similar to those of the 150 ppm- 

hours/week group, only less pronounced. Splenic and renal tubular 

hemosiderosis was also less pronounced. In the three lowest exposure 

groups, hepatic, splenic, and renal tubular hemosiderosis was greatest at 

the 0.2-ppm continuous level, less at 1 ppm, and still less in the 0.2-ppm 

intermittent group. There was no cholestasis or bile duct proliferation in 

the livers of these mice.

The interspecies differences observed in the development of 

hemosiderosis and cholestasis were attributed to species susceptibility to 

methylhydrazine-induced hemolysis and to the ability of some species to 

clear the hemolytic products.

In 1973, Darmer and MacEwen [95] reported the effects of long-term 

exposure of animals to methylhydrazine vapor. Groups of 8 female beagles, 

4 female Rhesus monkeys, and 80 male Sprague-Dawley rats were exposed 

continuously to methylhydrazine at 0, 0.04, or 0.1 ppm for 90 days. After 

the animals were exposed for 45 and 90 days, blood samples from 30 rats of 

each group were examined, while the remaining 20 rats were killed for 

tissue examination. Blood counts were measured on the dogs and monkeys 

before the experiment and every 2 weeks thereafter. In addition, total 

serum inorganic phosphorus, serum alkaline phosphatase, and erythrocyte 

fragility (dogs only) were determined. The presence of Heinz bodies was 

noted, and body weight was monitored.

76



Exposure of rats to methylhydrazine at 0.1 ppm for 90 days (16.8 ppm- 

hours/week) caused a significant decrease in body weight (about 20 g), but 

organ-to-body weight ratios were unaffected [95]. Rats exposed at 0.04 ppm 

(6.7 ppm-hours/week) showed no growth impairment. After 45 days of 

exposure, rats in both groups had a significant decrease in mean hematocrit 

value (6%), hemoglobin concentration (4%), and erythrocyte count (8%). 

After 90 days, rats exposed at 0.04 ppm showed only an increase in serum 

phosphorus (8%), while those exposed at 0.1 ppm had depressed erythrocyte 

counts (13%) and increased serum phosphorus levels (13%). In dogs exposed 

to methylhydrazine at 0.1 ppm, hematocrit value, hemoglobin concentration, 

and erythrocyte count were found to be decreased by 10, 17, and 24%, 

respectively, while serum phosphorus was increased by 23% and alkaline 

phosphatase activity by 465%. Red blood cells from dogs exposed at 0.1 ppm 

had increased osmotic fragility; changes were insignificant at 0.04 ppm. 

Reticulocytes increased at both exposure levels. No toxic effects were 

found in the blood of the monkeys. In all three species, the only gross 

tissue abnormality was a nutmeg appearance of the livers of dogs exposed at 

0.1 ppm considered to be consistent with passive congestion. No 

microscopic data were reported.

O'Brien et al [96] investigated the acutely toxic effects of several 

hydrazines, including methylhydrazine, on rats. Thirty-five female rats 

weighing 180-240 g were given methylhydrazine ip at 10-100 mg/kg. Toxic 

signs were observed, and the LD50 was determined to be 28 mg/kg. Death 

generally was preceded by convulsions. Blood glucose, measured before 

convulsions began in two rats given an LD50 dose, was elevated 2-3 fold in 

35 minutes. The authors, however, considered that glucose interference was
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not related to the lethal action of methylhydrazine.

In 1971, Gregory et al [97] reported on the effect of varying the 

route of administration on the LD50's for methylhydrazine in hamsters and 

Sprague-Dawley rats. A 4.2% solution of methylhydrazine was given orally, 

ip, and iv, and a 50% solution was applied topically. The LD50’s observed 

in rats and hamsters, respectively, were 70.7 and 22.1 mg/kg for oral 

doses, 183.4 and 239.4 mg/kg for topical applications, and 20.5 and 21.2 

mg/kg for ip injections. The LD50 for iv injections in rats was 17.3

mg/kg. The cause of death was respiratory failure. Those rats alive 3 

weeks after exposure had mild to severe muscular incoordination and

cerebellar demyelinization. The LD50's for methylhydrazine nitrate were 

similarly calculated. Except for oral administration in hamsters, the 

nitrate form was slightly more toxic than the free base.

Rothberg and Cope [58] reported LD50's for methylhydrazine of 14.2 

Ml/kg (12 mg/kg) for iv injection in rabbits and 93 mg/kg and 47 mg/kg for 

rabbits and guinea pigs, respectively, following skin absorption. A mild 

edema appeared on the skin at the site of application, disappearing in 24 

hours and leaving a blanched appearance to the skin. Application of 3 m1 

of methylhydrazine to the eye of each of two rabbits resulted in only mild 

conjunctivitis and slight erythema of the eyelid.

In 1969, Smith and Clark [98] reported on the absorption of

methylhydrazine through canine skin. Methylhydrazine at doses of 0.32-5.75 

millimoles/kg (14.7-264.5 mg/kg) was applied to a 300-sq cm area on the 

chest of 16 anesthetized male mongrels. The skin at the site of

application quickly reddened, the discoloration deepened, the skin became 

edematous, and eventually the site appeared slightly gray. Swelling
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subsided in 6 hours. Only one animal, receiving 175 mg/kg, died during the 

6-hour period, but many convulsed despite the anesthesia. Methylhydrazine 

was detected in the blood within 30 seconds of application. The 

concentration in blood continued to rise for 30-60 minutes, eventually 

reaching a plateau; the amount of both methylhydrazine and methemoglobin in 

the blood was apparently dose-related. After 100-140 minutes, there was a 

gradual decline in methemoglobin throughout the 6-hour observation period. 

The authors noted that a dermal dose 5-7 times that of iv injection was 

necessary to produce an equivalent amount of methemoglobin.

Fortney and Clark [46] investigated the effect of methylhydrazine on 

methemoglobin production both in vitro and in vivo. For the in vivo 

experiment, anesthetized dogs were injected with methylhydrazine iv at 0.54 

millimole/kg (25 mg/kg). Arterial blood samples were taken 5, 15, and 30 

minutes and 1, 1.5, 2.5, and 4 hours after injection to determine

methemoglobin concentration. Blood glucose and lactate concentrations were 

analyzed at 30-minute intervals from 1 hour before to 2 hours after 

injection, then at hourly intervals for 2 more hours. The amount of 

hemoglobin present as methemoglobin peaked at a level greater than 30% an 

hour after injection and declined gradually to 19% in the next 3 hours. 

The blood lactate rose markedly 1-2 hours after injection and was still 

elevated at 4 hours. Blood glucose rose slightly the 1st hour and then 

fell sharply.

In vitro, methemoglobin was formed when methylhydrazine was incubated 

with either canine blood or purified oxyhemoglobin, although the rate of 

reaction was faster in whole blood than in oxyhemoglobin [46].

79



In 1970, Leahy [47] reported the results of a study of the in vitro 

effect of methylhydrazine on blood. Canine blood was incubated with 

methylhydrazine under either unlimited aerobic or anaerobic conditions and 

reaction rates were determined by sequential spectral analyses.

Under anaerobic conditions, hemoglobin was reduced and only 2-3 g/100 

ml of methemoglobin was found [47]. Under aerobic conditions, the 

hemoglobin-methylhydrazine mixture gradually turned from bright red to 

purple-brown. The rate of methemoglobin formation and the total amount 

formed were proportional to the original concentration of methylhydrazine, 

although the conversion was limited to 75-80% of the original hemoglobin. 

When the molar ratio of methylhydrazine to heme was 1, a methemoglobin 

concentration of 12 g/100 ml was detected in 60 minutes. When this ratio 

was higher than 2, rapid denaturation of globulin and precipitation were 

observed. The blood of humans, rats, and monkeys was also tested under 

aerobic conditions. The equilibrium levels of methemoglobin reached in the 

blood samples differed in each species and were 8.5, 4.0, 3.0, and 2.5

g/100 ml for dogs, humans, rats, and monkeys, respectively, when the

methylhydrazine-heme ratio was 0.5. Gas-chromatographic analysis of the 

gas produced during aerobic incubation showed the presence of nitrogen and 

methane representing about 80% of the nitrogen and 20% of the carbon of the 

methylhydrazine.

When one considers the equilibrium amount of methemoglobin that can

be accumulated in the blood, the argument that human blood is more

sensitive to the effects of methylhydrazine than the blood of rats and 

monkeys but is less sensitive than canine blood is supported.
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Van Stee [62] investigated the effects of methylhydrazine on the 

renal function of dogs in an experiment identical to the one discussed 

above for hydrazine. Nine anesthetized dogs were given iv injections of 

methylhydrazine at 0.63 millimoles/kg (29 mg/kg) and tubocurarine chloride 

to supress convulsions. Inulin and PAH clearance rates were significantly 

decreased, although renal plasma flow was not affected. Methemoglobinemia 

appeared within minutes following injection of methylhydrazine, and 

methemoglobinuria appeared within a few hours. The author postulated that 

the mechanism producing impairment in renal function was similar to that 

for hydrazine, ie, decreased PAH clearance was caused by decreased 

glomerular filtration and interference with active transport by the 

proximal renal tubular epithelium.

In 1969, Sopher et al [99] studied the effects of methylhydrazine on 

dogs. Forty-two beagles were each given a single ip injection of 5-30 

mg/kg of methylhydrazine, some with 100-200 mg/kg of pyridoxine to protect 

against the convulsive effects of methylhydrazine. One hour to 8 days 

later, the animals were killed and the major organs removed for gross and 

microscopic examination.

Methylhydrazine at 5 mg/kg caused vomiting and convulsions but no 

deaths; at 10 mg/kg or more, death occurred within 2 hours [99]. The toxic 

signs were relieved by pyridoxine, and those animals that received both 

preparations recovered. In dogs killed 1-2 days after injection with 

methylhydrazine and not receiving pyridoxine, the most prominent gross 

findings were in the urinary tract. The kidneys were swollen, and the 

delineation between the cortex and medulla was obliterated. The bladder 

contained dark-brown urine and occasional blood clots. All other organs
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examined were also congested. In dogs that were killed more than 2 days 

after injection of both methylhydrazine and pyridoxine, kidney swelling and 

hyperemia of other organs were diminished or absent. Of the dogs that 

received a high dose of methylhydrazine, those that convulsed and died had 

severe congestion and cyanosis in most organs and scattered hemorrhagic 

areas in the lungs.

The microscopic appearance of the kidney tissues varied with the 

methylhydrazine dose given and the time between injection and necropsy 

[99]. The higher the dose, the more pronounced the changes, which included 

swelling and eosinophilia in the epithelium of the proximal tubules and 

loops of Henle. Tissues from dogs given methylhydrazine at 5 mg/kg were 

normal, while the damage in the kidneys of the dogs receiving 7.5-15 mg/kg 

involved several changes, including overt hemoglobinuria and hyaline 

droplet degeneration. At 20 or 30 mg/kg, methylhydrazine also caused 

severe renal epithelial damage characterized by syncytial masses that 

engulfed the hemoglobin casts. The animals that survived for several days 

developed hemosiderosis, and the hyaline droplets were either reduced in 

size and number or no longer present. The authors concluded that 

methylhydrazine in dogs caused severe erythrocyte damage, leading to severe 

anemia and formation of methemoglobin and other hemoglobin destruction 

products, that resulted in hemoglobinuric nephropathy.

The toxic effects of repeated injections of methylhydrazine on 

monkeys were studied by Back and Pinkerton [100], In 10 Macaca mulatta 

monkeys given methylhydrazine ip at 2.5 or 5 mg/kg for 31 days for total 

doses of 65 or 95 mg/kg, the only clinical or microscopic evidence of 

toxicity was a decrease in body weight in the 1st week. Back and Pinkerton
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therefore administered higher ip doses of methylhydrazine, to induce 

clinical signs and tissue damage, to three male monkeys weighing from 2.40 

to 5.91 kg. Two controls received saline injections. Doses of 7 and 10 

mg/kg were alternated daily until the animal died.

No toxic signs were noted in any of the animals on the 1st day, but 

one animal died on each of the next 3 days; the causes of death were not 

apparent [100], Serum enzyme activities, SGOT and alkaline phosphatase, 

were normal, except that the last blood sample of one monkey had a high 

SGOT activity. Significant amounts of fatty infiltration and vacuolization 

of cells were noted in the liver. The kidneys, heart, and bone marrow were 

normal. One animal had tiny perivascular cerebellar hemorrhages, which the 

authors attributed to severe convulsions. The authors also noted that 

there was an extremely narrow range between a no-effect and a lethal 

concentration of methylhydrazine for monkeys.

Ten male and 10 female Macaca mulatta monkeys, weighing 3-6 kg, were 

used by George and associates [101] in a study of the nephrotoxicity of 

methylhydrazine. Eight weeks after translocation of the left kidney to a 

subcutaneous pocket, baseline values of kidney function and a kidney biopsy 

were performed.

After another 6 weeks, the monkeys were divided into five groups, 

apparently of four each [101], Group I, the control group, was given 

saline ip daily for 14 days. The other groups received methylhydrazine. 

Animals in group II received a single injection of 7.5 mg/kg; group III, 

2.5 mg/kg/day for 14 days; group IV, 5 mg/kg/day every other day for 14 

days; and group V, 5 mg/kg/day for 5-10 days. Forty-eight hours after the
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final injection, biopsy specimens were taken for electron microscopic

examination.

Although monkeys in groups IV and V developed toxic signs, no 

methylhydrazine was detected in the blood or urine of any animal 24 hours 

after the final injection [101]. In group II, there were cellular

vacuolization and mitochondrial swelling in both the proximal and distal 

tubular cells after injections. These changes were neither uniformly 

distributed nor uniformly severe but were present in all biopsy samples. 

In the most severe cases, the tubular cells were completely filled with 

vacuoles and mitochondria were barely recognizable. The monkeys in groups 

III, IV, and V had similar but less severe changes in renal tubular cells.

George et al [101] noted that the changes observed in renal tubular

cell morphology did not cause significant changes in renal function. They

hypothesized that there were enough intact, unaffected nephrons to maintain 

normal function. Comparing their findings in monkeys to those in dogs 

[62,99], the authors concluded that the nephrotoxic effects on dogs were 

more severe.

This study [101] appears to complement an earlier study by Back and

Pinkerton [100] in which only slight fatty infiltration of the liver was

observed using a light microscope. Using an electron microscope, George et 

al [101] observed changes in renal tubular cells. Both studies agreed that 

there were no significant changes in renal function of monkeys given ip 

injections of methylhydrazine at 2.5-7.5 mg/kg.

Reynolds and Back [102] tested the effect of ip injections of

methylhydrazine on the learned behavior of macaque monkeys. Four monkeys 

received methylhydrazine at 2.5 mg/kg and five received 5 mg/kg. Each
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monkey was given hourly shock-avoidance tests, eight times/day, for 3 days; 

injections were given on the 1st and the 3rd days.

Performance did not vary with dose [102]. In over half the tests, a 

performance decrement preceded or occurred without clinical signs, but 

clinical signs never preceded a performance decrement. Performance 

deteriorated 1-2 hours after methylhydrazine injection and returned to 

normal in 3-30 hours. Clinical signs generally occurred 2-3 hours after 

injection and disappeared in 3-6 hours. The authors believed that 

performance tests were a more sensitive index of toxicity than were 

clinical signs and that operant behavior in monkeys was significantly 

impaired after ip injection of methylhydrazine at 2.5 or 5 mg/kg.

(2) Metabolism

Male Sprague-Dawley rats, weighing 250 g, in groups of two 

each, were given ip injections of 14C-labeled methylhydrazine in a study of 

methylhydrazine metabolism by Dost et al [103]. The rats were then kept in 

chambers, and radioactivity in their expired air and their urine was 

monitored. The total respiratory radioactivity measured 27 hours after 

injection of methylhydrazine at doses of 5.5, 11, and 22 mg/kg was 37, 31,

and 24%, respectively, of the injected amount. Of the radioactivity 

detected, 20-25% was 14C carbon dioxide; the remainder was identified as 

methane. The output of these two gases peaked at about the same time, but 

the ratio of yields of methane to carbon dioxide decreased from 10 

initially to 3 or 4 after 10 hours, suggesting to the authors that 

different metabolic pathways might be involved.

Twenty-seven hours after administration of methylhydrazine, the rats 

given 5.5, 11, or 22 mg/kg had excreted 41, 39, and 22%, respectively, of
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the total doses in the urine [103]. The difference between the amount of 

radioactivity injected and that found in the urine and exhaled air at 27 

hours was considered to have been retained by the tissues. These amounts 

were calculated to be 1.2, 3.2, and 12 mg/kg, respectively. The authors 

believed that the increased percentage of tissue-retained radioactivity at 

the highest dose was caused by an impairment of the excretion mechanisms.

Pinkerton et al [104] studied the distribution and excretion of 

methylhydrazine in four species. Twenty Sprague-Dawley rats, 20 Swiss

mice, 17 mongrel dogs, and 16 Macaca mulatta monkeys received 14C-labeled 

methylhydrazine ip at 15, 22, 10, and 10 mg/kg, respectively. The animals, 

fasted overnight, were killed 2, 4, 8, or 24 hours after injection, and 

urine and blood samples were collected for analysis of methylhydrazine. 

Whole organs were removed and weighed, and radioactivity in each organ was 

measured individually, except for mice, where organs were pooled in groups 

of five to obtain sufficient material.

In the more than 20 samples of tissues and serum analyzed, the serum, 

liver, kidneys, and bladder in all 4 species had the highest concentration 

of radioactive material [104]. These concentrations in samples from dogs 

and mice peaked at 4 hours but peaked at 2 hours in those from the monkeys. 

The radioactivity in samples from rats did not have any apparent pattern. 

Urinary excretion of methylhydrazine was most rapid in mice, followed by 

that in rats, monkeys, and dogs. Two hours after injection, dogs excreted 

only one-half as much of the injected dose as the monkeys, rats, or mice 

did. Twenty-four hours after injection, 25.6, 31.3, and 39.9% of the

injected methylhydrazine had been excreted in the urine of the dogs, 

monkeys, and rats, respectively.
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In a later study of several metabolic effects of methylhydrazine in 

male Sprague-Dawley rats, Dost [105] examined glucose catabolism during 

acute and subacute methylhydrazine intoxication. The 14C-labeled glucose 

was infused intraintestinally at 150 mg/hour, a concentration adequate to 

prevent glycogen depletion. In acute studies, a single ip injection of 

0.45 millimole/kg (21 mg/kg) of methylhydrazine was given 7 hours later. 

In subacute studies, 0.036 millimoles/kg/hour (1.66 mg/kg/hour) of 

methylhydrazine was given by iv infusion, starting 4 hours before glucose 

administration. In both cases, respired 14C carbon dioxide was measured as 

an index of glucose catabolism. In a third experiment, glucose infusion 

was started, 7 hours later methylhydrazine infusion began, and blood 

glucose concentrations were monitored.

Following both acute and subacute methylhydrazine intoxication, there 

was a substantial depression of glucose catabolism, as measured by the 

concentration of 14C carbon dioxide in the respired air. In the subacute 

studies, it was possible to distinguish that for glucose labeled in the 

first position, oxidation was much less depressed compared with that

observed when the label was in the second, third, fourth, or sixth

position. Pyridoxine was effective in reversing this depression. In the 

third experiment, blood glucose concentrations increased following

administration of methylhydrazine and they continued to increase for about

an hour after the onset of convulsions even though methylhydrazine 

administration was stopped. Both pyridoxine and insulin were effective in 

counteracting the hyperglycemia induced by methylhydrazine.
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(3) Carcinogenicity and Effects Related to Reproduction 

In 1972, Toth [80] reported a study of the tumorigenicity of 

methylhydrazine in Swiss mice. Fifty males and 50 females, 6 weeks of age, 

were given 0.01% methylhydrazine in drinking water for life. The average 

daily intake of methylhydrazine was 0.66 mg/male and 0.71 mg/female. Data 

from a control group of 110 female and 110 male mice were obtained 

previously from a similar colony [79].

Methylhydrazine shortened survival, ie, all experimental mice died 

before they were 80 weeks old while the last of the control animals was 

still alive at 120 weeks [80]. Of the 50 females given methylhydrazine, 12 

(24%) developed 17 lung tumors classified as adenomas at an average age of 

51 weeks (range 36-67). The female controls had a lung tumor incidence of 

12.7%. Of the 50 males given methylhydrazine, 11 (22%) developed 12 lung 

adenomas at an average age of 51 weeks (range 34-70), compared with 10% in 

the male controls. Two malignant lymphocytic lymphomas were observed in 

females. Fifteen liver cell tumors, both benign and malignant, eight 

cholangiomas and two cholangiocarcinomas were diagnosed in animals given 

methylhydrazine.

As part of the same study, 0.001% methylhydrazine sulfate was 

administered to another group of mice of the same age in an identical 

manner [80]. The average daily intake of methylhydrazine sulfate for the 

males was 0.102 mg and 0.078 mg for the females, an equivalent of 0.033 and 

0.025 mg of methylhydrazine, respectively. Of the 50 female mice, 23 (46%) 

developed 46 lung tumors at an average age of 95 weeks (range 71-119). Of 

these 23 mice, 11 had a total of 17 adenomas, 4 had 5 adenocarcinomas, and 

8 had 15 adenomas and 9 adenocarcinomas. Ten females (20%) each had a
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malignant lymphoma. Two of these lymphomas were lymphocytic, seven were 

histocytic, and one could not be classified. Of the males receiving

methylhydrazine sulfate, 23 (46%) developed 43 lung tumors at an average 

age of 87 weeks (range 56-117). Of these 23 mice, 18 had a total of 24

adenomas, 2 had 1 adenocarcinoma each, and 3 had a total of 10 adenomas and

7 adenocarcinomas. Eight males (16%) developed malignant lymphomas. Seven 

of the lymphomas were histocytic, and one could not be classified. Fifteen 

controls developed tumors; five were hemangiomas, but none was a lymphoma.

The incidence of lung tumors caused by methylhydrazine sulfate was 

higher than that caused by methylhydrazine, although the latter was given 

at a dose 10 times higher than the former [80]. On the average, the mice 

given methylhydrazine survived 51 weeks while those given the sulfate salt 

survived 91 weeks. Furthermore, methylhydrazine is less stable than its 

sulfate salt, and it is possible that methylhydrazine given in the feed 

water may have degraded.

The previously described study by Roe et al [78] on the

carcinogenicity of hydrazine and several of its derivatives included

methylhydrazine sulfate. Twenty-five female virgin Swiss mice were each 

given 0.5 mg of methylhydrazine sulfate by gavage for 5 days/week for 40 

weeks. There were 85 controls. The mice were examined 40-50 or 50-60 

weeks after exposure began. By 60 weeks, 1 (5%) of the 19 experimental

mice examined had evidence of tumor formation, and that mouse had 6 lung

tumors, while 8 surviving control mice (10%) had 11 tumors. The authors

concluded that methylhydrazine sulfate was not carcinogenic in mice, but

they noted that they were unable to administer higher doses because of the 

toxicity of the compound.
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Kelly et al [81] examined the incidence of lung tumors in mice given 

methylhydrazine. Thirty male and 30 female CDF1 mice, 7-8 weeks old, were 

given 8 weekly doses of methylhydrazine. Males received 0.23 mg/dose (7 

mg/kg) ip and females received 0.46 mg/dose (17 mg/kg) orally. Ten males 

and 10 females given saline served as controls.

Three experimental males (10%) had developed lung tumors when killed

at 33 weeks, but there were no tumors in the nine females examined [81].

The control group had a tumor incidence of 11% in males and 10% in females. 

Since the difference was not significant, the authors concluded that

methylhydrazine was not carcinogenic in mice.

Several weaknesses are apparent in these two studies [78,81].

Considering the number of animals, total dose used, and the latent period 

observed by Toth [80], the validity of the conclusion by Kelly et al [81] 

and Roe et al [78] that methylhydrazine is not carcinogenic in mice is 

questionable. Furthermore, the authors did not mention if tumors had 

occurred in tissues other than the lungs. In both cases, a significant 

number of animals apparently were not examined.

In 1973, Toth and Shimizu [106] studied the tumorigenicity of 

methylhydrazine in Syrian golden hamsters. Groups of 50 male and 50 female 

hamsters were given 0.01% methylhydrazine, prepared three times a week, in 

their drinking water for life starting at 6 weeks of age. On the average, 

the males received 1.1 mg/day of methylhydrazine and the females received 

1.3 mg/day. There were 100 males and 100 females in the control group.

Sixteen female hamsters (32%) developed malignant histiocytomas of 

the liver (Kupffer cell sarcoma) at an average age of 70 weeks (range 46- 

92) [106]. In males, 27 (54%) developed malignant histiocytomas of the
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liver at an average age of 78 weeks with a range of 47-103 weeks. In 

addition, these animals had six tumors in the lungs, two in the lymph 

nodes, and two in the spleen. Nine females (18%) developed tumors of the 

cecum at an average age of 64 weeks (range 50-76). Seven of these animals 

had nine polypoid adenomas, one had a polypoid adenoma and an 

adenocarcinoma, and one had two adenocarcinomas. In males, seven (14%) 

developed nine tumors of the cecum: five had a total of six polypoid

adenomas, one had a polypoid adenoma and an adenocarcinoma, and another had 

an adenocarcinoma. In the controls, one female and one male each developed 

one polypoid adenoma.

In 1975, a study [107] on the effects of methylhydrazine in Syrian 

golden hamsters was reported. Methylhydrazine, prepared daily, was 

administered in the drinking water to 5-month-old hamsters for life. 

Preliminary experiments indicated that methylhydrazine was not stable in 

tapwater unless the pH was adjusted. Therefore, 30 hamsters received 0.01% 

methylhydrazine in tapwater, 30 received it in tapwater adjusted to pH 3.5, 

and 17 had their drinking water adjusted to pH 3.5.

Four tumors, all adrenocortical, were found in three controls (23% of 

13 survivors) [107]. Four tumors in 4 animals given the unbuffered 

solution (16% of 25 survivors) consisted of an adrenocortical carcinoma, a 

hemangioendothelioma, and 2 carcinomas of the liver. Six tumors in 5 

animals given the buffered solution (20% of 25 survivors) were classified 

as adrenocortical carcinomas, a melanoma and a cutaneous histocytoma. By 

comparing the overall tumor incidences, the authors concluded that 

methylhydrazine was noncarcinogenic under these experimental conditions.
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This conclusion [107] is in disagreement with that reached by Toth 

and Shimizu [106]. There were differences in the preparation of the 

chemicals and the ages of hamsters at the beginning of the experiments, 

which could have contributed to the conflicting results.

In a study of the teratogenic effects of some hydrazine derivatives, 

Chaube and Murphy [108] gave single ip injections of methylhydrazine 

sulfate at various doses to 23 pregnant rats on the 12th day of gestation 

and killed them on the 21st day. The authors estimated an LD50 in dams to 

be 80 mg/kg. In the pups, there were no abnormalities in the palate, 

appendages, paws, tail, or jaws. The authors concluded that 

methylhydrazine was not teratogenic. No additional details of the 

experiment were reported, so there is insufficient information to draw any 

conclusions beyond those of the authors.

In a 1976 study by Greenhouse [91], previously discussed for 

hydrazine, the teratogenic effects of methylhydrazine on South African 

clawed toad embryos were investigated. Embryos were cultured in an aqueous 

solution of methylhydrazine at various concentrations up to 15 mg/liter. 

At 3, 5, 10, and 15 mg/liter, 1, 52, 93, and 100%, respectively, of the

exposed embryos were malformed. The malformations observed were similar to 

those caused by hydrazine, and their appearance was independent of 

concentration. Greenhouse concluded that methylhydrazine was teratogenic 

in toad embryos.

Brusick and Matheson [109], in 1976, described the results of four 

tests of the mutagenicity of methylhydrazine: (1) in vitro microbial

assays (Ames tests) with five mutant strains of Salmonella typhimurium, an 

Escherichia coli strain, and a strain of Saccharomyces cerevisiae; (2) an

92



in vitro mutation assay with cultured mouse cells; (3) an assay for 

unscheduled DNA synthesis in cultured human diploid cells; and (4) a 

dominant-lethal assay in mice. In all but the dominant-lethal assay, the 

tests were run both with and without mouse liver microsomes, a procedure to 

evaluate the possible effect of metabolic activation of methylhydrazine to 

a more powerful mutagen. Both positive and negative controls were run in 

all assays.

In the Ames test, concentrations of methylhydrazine ranging from 

0.0001 to 5.0 jul/plate produced negative results with the mutant S. 

typhimurium strains TA-1535, TA-1537, TA-1538, TA-98, and TA-100, and with 

the E. coli and S. cerevisiae strains in standard plate tests [109]. These 

negative results were obtained both with and without microsomal activation. 

However, when TA-1535 cells were incubated with liver microsomes and 1 or 5 

jul/ml of methylhydrazine in suspension tests and assayed for revertant 

cells, mutagenic activity was demonstrated. When L5178Y mouse lymphoma 

cells were incubated with methylhydrazine in nonactivation and activation 

tests, no mutations were found.

Unscheduled DNA synthesis was evaluated in normal human diploid WI-38 

cells in tissue culture, and 3H thymidine was incorporated into DNA to 

follow the synthesis [109]. Methylhydrazine had no mutagenic activity in 

either nonactivation or activation assays at concentrations of 0.1, 0.5,

and 1.0 ¿tl/ml.

In the dominant-lethal test, 10 male ICR mice each were given 

methylhydrazine ip at 0.26, 0.86, and 2.60 mg/kg for 5 days and 10 male 

rats (strain unstated) were similarly given methylhydrazine at 0.215, 0.72, 

and 2.5 mg/kg. Two days after the last dose, each mouse was caged with two
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virgin females for 5 days. The mating schedule was repeated with two new 

females each week for 7 weeks. Fourteen days after the middle of the 

mating period, each female was killed and examined for number of living and 

dead fetuses. There were no significant trends showing that 

methylhydrazine produced mutation by this test.

The authors [109] concluded that methylhydrazine showed no mutagenic 

activity in any of the tests used, except in an activation-suspension assay 

with Salmonella typhimurium T-1535.

(c) 1,1-Dimethylhydrazine

(1) Systemic Effects

Jacobson et al [20], in 1955, investigated the acute

inhalation toxicity of some methylated hydrazine derivatives. Rats, mice, 

and hamsters were exposed to 1,1-dimethylhydrazine for a single 4-hour 

exposure in an experiment identical to that reported earlier for hydrazine. 

Toxic signs were the same as those produced by exposure to hydrazine, and 

LC50 values were calculated to be 252 ppm (618 mg/cu m) for rats, 172 ppm

(423 mg/cu m) for mice, and 392 ppm (962 mg/cu m) for hamsters.

Groups of three male beagles were also exposed to 1,1-

dimethylhydrazine at 24-111 ppm (59-272 mg/cu m) [20] . Two dogs exposed to

1,1-dimethylhydrazine at 111 ppm had convulsions and died within 192 

minutes, and the third dog, near death, was killed for examination. All 

three dogs vomited and convulsed, two panted, and one had diarrhea. One 

dog exposed to 1,1-dimethylhydrazine at 52 ppm for 4 hours was killed when 

near death 1 day after exposure. The other two animals survived; one 

showed panting, nausea, and incoordination, while the other showed no toxic 

signs. All dogs exposed at 24 ppm for 4 hours survived, but one vomited
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and convulsed. All five surviving dogs were killed on day 14 and 

necropsies were performed. Results of blood counts, sulfobromophthalein 

retention, and prothrombin time were normal. Gross examinations of tissue 

from dogs, rats, and mice showed pulmonary edema and some instances of 

patchy pulmonary hemorrhage. No other significant change was found.

In 1960, Rinehart et al [110] reported the effects of long-term 

inhalation of 1,1-dimethylhydrazine on male Wistar rats, female CF-1 mice, 

and male beagle dogs. All exposures were for 6 hours/day, 5 days/week. 

Twenty rats and 30 mice were exposed to 1,1-dimethylhydrazine at 140 ppm 

(342 mg/cu m) for 6 weeks (4,200 ppm-hours/week), and 30 rats and 30 mice 

were exposed at 75 ppm (183 mg/cu m) for 7 weeks (2,250 ppm-hours/week). 

Two groups of three dogs, each animal weighing about 11.4 kg, were exposed 

at 25 ppm (61 mg/cu m) for 13 weeks (750 ppm-hours/week) or 5 ppm (12.2 

mg/cu m) for 26 weeks (150 ppm-hours/week).

Rats and mice had occasional tremors during exposure, and those that 

died had tonic-clonic convulsions [110]. At 342 mg/cu m, 29 of 30 mice and 

1 of 20 rats died, and the others gained weight at a slower rate than did 

controls during the first 2 weeks. At 183 mg/cu m, 8 of 20 mice died 

within 5 weeks, while the only toxic signs observed in rats were breathing 

difficulty and lethargy.

During the 3rd day of exposure to 1,1-dimethylhydrazine at 61 

mg/cu m, the dogs showed signs of toxicity, including depression, increased 

salivation, vomiting, diarrhea, incoordination of the hindlegs, tonic- 

clonic convulsions, hyperemic oral and conjunctival membranes, bradycardia, 

and fever [110]. One dog died, one had all the toxic signs, and the third
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showed only depression and increased salivation. During 13 weeks of 

exposure, the two survivors lost 2.5 kg of weight, compared with 0.2 kg in 

three control dogs. No severe toxic signs were observed in the dogs

exposed to 1,1-dimethylhydrazine at 12.2 mg/cu m, but an average weight 

loss of 0.8 kg compared with the controls was noted.

After 4 weeks of exposure to 1,1-dimethylhydrazine at 61 mg/cu m, 

dogs appeared to have hemolytic anemia, since erythrocyte counts were

decreased by 58%, hematocrit values by 28%, and hemoglobin concentrations 

by 34% [110]. Hematocrit and hemoglobin values later approached

preexposure values, but erythrocyte counts remained depressed. Since the 

blood was first examined at the 4th week of exposure, the time of onset of 

the blood abnormalities was uncertain. Bilirubin, blood nonprotein 

nitrogen, blood glucose level, and sulfobromophthalein retention time were 

all normal throughout the experiment. Dogs exposed at 12.2 mg/cu m had 

similar evidence of hemolytic anemia after 24 weeks, a 26% decrease in

hemoglobin concentration, an 18% decrease in hematocrit value, and a 17% 

decrease in erythrocyte count. The mean bilirubin level was elevated.

Microscopic examination of the rodent tissues showed no morphologic 

alteration that could be attributed to 1,1-dimethylhydrazine [110]. Dogs 

that survived the exposure at 61 mg/cu m showed hemosiderosis of the 

reticuloendothelial system, including the spleen, lymph nodes, bone marrow, 

and Kupffer cells of the liver. The bone marrow had significantly 

increased erythrocytic activity. The lung tissue of the dog that died

during exposure at 61 mg/cu m showed alveolar hemorrhaging, emphysema, and 

collapse but no hemosiderosis. Dogs exposed at 12.2 mg/cu m showed 

hemosiderosis only in the spleen; no other tissue abnormalities were noted.
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The authors [110] concluded that 1,1-dimethylhydrazine at

concentrations of 5 ppm (12.2 mg/cu m) or greater was toxic, that the most 

prominent sign of toxicity in dogs was hemolytic anemia, and that, for 

humans, 1,1-dimethylhydrazine concentrations should be kept well below 5 

ppm. They suggested 0.5 ppm (1.22 mg/cu m) as a guideline for industrial 

practice.

The toxicity from single, brief exposures to 1,1-dimethylhydrazine 

vapor for rats and dogs was examined by Weeks et al [111], Male rats and

mongrel dogs were exposed for 5, 15, or 60 minutes and rats alone were 

exposed for 30 minutes. Selected rats from each group were killed for

examination immediately after exposure or 1, 3, or 7 days later.

Similarly, dogs were killed immediately or after 7, 14, or 21 days. No 

microscopic changes were found in tissue samples from either the dogs or 

the rats. The LC50's for all the groups are given in Table III-l. Ten 

additional rats were exposed to 1,1-dimethylhydrazine at 1,000 ppm for 60 

minutes, and their blood counts were normal following exposure.

The authors [111] noticed that sharp noises made the dogs exposed to

1,1-dimethylhydrazine shiver and cower. Consequently, dogs were exposed 

for single 5-, 15-, and 60-minute periods at various fractions of the LC50 

values of 1,1-dimethylhydrazine. Auditory, visual, and electrical stimuli 

were added at 15 minutes, 1 hour, and 2 hours thereafter to evaluate the 

role of external stimulation. The external stimuli added stress to the 

exposed animals and seemed to magnify or perhaps hasten the development of 

toxic signs.
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Weeks et al [111] also estimated the retention of 1,1- 

dimethylhydrazine in six pentobarbital-anesthetized dogs. Each animal was 

exposed through an endotracheal tube or a face mask to 1,1- 

dimethylhydrazine at 2,900-19,600 mg/cu m for 60 minutes. It was reported 

that 71-93% of the 1,1-dimethylhydrazine inhaled was retained in the 

respiratory tract by the dogs.

Weeks et al [111] further investigated the effects of multiple 

exposure to 1,1-dimethylhydrazine on conditioned avoidance tests. Groups 

of four dogs each were exposed twice a week for 6 weeks to 1,1- 

dimethylhydrazine at 50, 200, or 600 ppm for 60, 15, and 5 minutes,

respectively. All animals were observed for toxic signs and reflex 

reactions. No changes from normal were noted in the conditioned avoidance 

test, and there were no alterations in the patellar, extensor thrust, and 

hopping reflexes. Doubling the exposure concentrations of the three groups 

of dogs for 2 additional weeks had no effect on the conditioned avoidance 

responses, and no changes were noted in neurologic and physical 

examinations, even though signs of intoxication appeared after the first 

exposure.

Back et al [112], in 1977, reported the results of 6-month inhalation 

exposures of C57 black mice, Fischer 344 rats, Syrian golden hamsters, and 

beagle dogs to 1,1-dimethylhydrazine at 5, 0.5, or 0.05 ppm. At each

concentration, 400 female mice, 200 male rats, 200 male hamsters, and 4 

dogs of each sex were exposed for 6 hours/day, 5 days/week. An equal 

number of animals of each species was maintained as controls. Necropsies 

were performed on all animals that died, and a series of blood measurements 

and clinical tests were conducted on dogs.
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No toxic sign was observed in any animal exposed to 1,1- 

dimethylhydrazine [112]. The results of clinical chemistry tests were all 

normal except for SGPT activity and BSP retention. The SGPT values were 

significantly elevated (P<0.01) in dogs exposed at 5 ppm, but they returned 

to normal 6 months after exposure ended. At 0.5 ppm, fairly frequent 

increases (P<0.05) in SGPT were observed, although the degree of elevation 

was less than that seen in the 5-ppm group. BSP retention was measured at 

the end of exposure, and only those exposed at 5 ppm had significantly 

elevated values (P<0.05). These values returned to normal 9 months after 

exposure ended. The authors [112] stated that the significant effects of

1,1-dimethylhydrazine were limited to slight to moderate hepatotoxicity in 

dogs exposed at 5 ppm (150 ppm-hours/week) after 6 months of exposure.

Haun [113] reported that in the previous study [112], 1,1-

dimethylhydrazine was contaminated with 0.12% nitrosodimethylamine. The 

author examined the effects of this contaminant by preparing pure 1,1- 

dimethylhydrazine. Four beagles were exposed to this purified compound at 

5 ppm, 6 hours/day, 5 days/week for 8.5 weeks. Four dogs were used as 

controls. Liver biopsies were taken and the dogs rested 5 days. Then the 

dogs were exposed to the purified 1,1-dimethylhydrazine at 5 ppm 

continuously for 13 days. Immediately following the second exposure, two 

controls were exposed to 1,1-dimethylhydrazine to which 0.12% 

nitrosodimethylamine had been added. Two dogs, previously exposed to pure 

1>1-dimethylhydrazine, were used as controls. Various clinical tests, 

including measurement of SGPT activity, were performed both before and 

during exposure. BSP retention times were determined at the beginning and 

end of the study.
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There was no elevation of SGPT activity from either intermittent or 

continuous exposure to 1,1-dimethylhydrazine, except when the contaminant, 

nitrosodimethylamine, was also present [113]. In all cases, BSP retention 

times were unaffected. The author concluded that nitrosodimethylamine was 

the active agent producing increased SGPT levels, even though the level 

tested was insufficient to cause discernible hepatocellular changes or 

alterations in liver function.

A study by Rothberg and Cope [58] on the acute toxicity of hydrazines 

included the effects of 1,1-dimethylhydrazine. The LD50's for 1,1- 

dimethylhydrazine in rabbits were found to be 89.2 jul/kg (69.8 mg/kg) by 

the iv route and 1.05 g/kg by percutaneous absorption. In guinea pigs, the 

LD50 for skin absorption was 1.31 g/kg. There was no evidence of skin 

damage. When 3 jul of 1,1-dimethylhydrazine was applied to the eyes of two 

rabbits, only mild conjunctivitis and slight erythema of the eyelid 

developed.

Hodge [114], in 1954, reported the results of acute toxicity tests of

1.1-dimethylhydrazine. The oral LD50 in female rats was found to be 0.46 

ml/kg (360 mg/kg). 1,1-Dimethylhydrazine was applied to the clipped 

bellies of rabbits and prevented from evaporating by a watch glass. It was 

lethal at 156 mg/kg but was tolerated at 23 mg/kg. When six rats inhaled

1.1-dimethylhydrazine at a concentration of 18.4% (v/v), all died within 35 

minutes. The effects of 1,1-dimethylhydrazine on eyes were investigated by 

instilling 2 drops (about 0.05 ml) of the compound into the right eye of a 

rabbit; only slight vascularization of eyelids, without any evidence of 

corneal injury, was observed. When 0.01 ml (7.8 mg) of 1,1-dimethyl-
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hydrazine was given intracutaneously to a rabbit, no skin irritation was 

found.

Smith and Clark [115] investigated the dermal absorption of 1,1-

dimethylhydrazine in dogs. 1,1-Dimethylhydrazine at doses of 5-30

millimoles/kg (300-1,800 mg/kg) was applied to a 15- x 20-cm shaved area on 

the chest of 13 anesthetized mongrels. Glucose and 1,1-dimethylhydrazine 

concentrations in the blood and urine were measured hourly for 6 hours

after 1,1-dimethylhydrazine application. The reduced glutathione content 

and glutathione peroxidase activity of erythrocytes were also estimated at 

hourly intervals. Two control animals were used to determine normal blood 

and urinary glucose concentrations.

1,1-Dimethylhydrazine spread rapidly and evenly over the surface 

[115]. A slight reddening developed within 10-15 minutes of application 

and quickly disappeared, leaving no sign of skin damage. Six of the dogs 

died about 6 hours after application. The dermal LD50 for 1,1-

dime thy lhydrazine was estimated to be 1,200-1,680 mg/kg. Mild clonic 

convulsions were seen in three dogs, and these convulsions were not always 

followed by death.

Skin application of 1,1-dimethylhydrazine at all doses tested 

produced detectable concentrations of the compound in the blood within 30 

seconds; however, neither blood nor urine concentrations of 1,1- 

dimethylhydrazine were dose-dependent [115]. All tested doses of 1,1- 

dimethylhydrazine caused mild hyperglycemia for 5-6 hours with a 

corresponding increase in urinary glucose. No effect was seen on reduced 

glutathione content in erythrocytes. Glutathione peroxidase activity 

decreased after the two lowest doses were given, remained stable at the
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midlevel dose, and increased at the highest dose and during the hour 

preceding death, regardless of the dose. The authors concluded that 1,1- 

dimethylhydrazine was toxic if applied dermally but that its mode of action 

was in biochemical systems other than those tested in their experiment.

O'Brien et al [96] determined the LD50 of 1,1-dimethylhydrazine in 

rats and studied its effects on carbohydrate metabolism. Ninety-four 

female rats, weighing 180-240 g, were given 1,1-dimethylhydrazine ip at 

doses of 50-408 mg/kg. The LD50 was estimated to be 102 mg/kg; this dose 

also induced the maximum number of convulsions. Higher doses led to a 

decrease in the time to onset of convulsions, the time between convulsions, 

and the time to death. Hyperglycemia was also found in two rats given an 

LD50 dose of 1,1-dimethylhydrazine, the blood glucose increasing from 80 to 

160 mg/100 ml in 80 minutes.

In 1964, Cornish and Barth [116] studied the effects of practical

grade 1,1-dimethylhydrazine on urinary amino acid and creatinine excretion 

in male Sprague-Dawley rats. In groups of four rats each receiving 1,1-

dimethylhydrazine ip at 40, 60, or 80 mg/kg, creatinine nitrogen values

were relatively constant for any given rat and were not affected by 1,1-

dimethylhydrazine. Amino acid nitrogen excretion, however, was increased 

on the 1st day after injection. When the amino acid nitrogen-to-creatinine 

ratios were calculated, the initial enhanced excretion of amino acid was

followed by a period of decreased excretion; by day 5, the ratios were only

74-77% of those of controls. Paper chromatography showed that there were

no abnormalities in the relative amounts of individual amino acids

excreted. The authors speculated that the observed increase in amino acid 

excretion could have been caused by interference with amino acid
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metabolism, protein synthesis, or gluconeogenesis. Toxic effects on the 

kidneys could not be ruled out, but examined tissue samples and SGOT 

activity were normal, so the authors did not believe that the effect was 

produced by tissue damage.

Patrick and Back [60] described the toxicologic effects of repeated 

injections of practical grade 1,1-dimethylhydrazine in 1965. Seven Rhesus 

monkeys, weighing 3.2-3.5 kg, each received 10 mg/kg of 1,1- 

dimethylhydrazine ip daily, 5 days/week, for 4 weeks. The only observed 

toxic effect was an initial weight loss of 0.2-0.8 kg, and the only 

abnormal finding in the blood was a 90% increase in the plasma glucose 

level. There was slight lipid deposition near the central vein in the 

liver of one monkey and in the tubular membranes of the kidneys of a second 

animal. Significant amounts of lipids were found in the heart muscle of 

two monkeys; there were trace amounts in two others.

In 1969, Cornish and Hartung [117] reported the effects of repeated 

administration of 1,1-dimethylhydrazine to rats. Groups of 10 female 

Sprague-Dawley rats with an average weight of 225 g were given daily ip 

injections of 0, 10, 30, 50, or 70 mg/kg of 1,1-dimethylhydrazine for 3 

weeks. Body weights and urine from seven animals in each group were taken 

daily; at necropsy, organs were weighed and tissue samples from two rats in 

each group were examined.

All the rats receiving 18 daily injections of 1,1-dimethylhydrazine 

at 10 mg/kg survived. The numbers of animals surviving 21 injections of 

30, 50, and 70 mg/kg were 5, 4, and 1, respectively [117]. All deaths

occurred during the first 3 days. There was an initial dosage-related 

weight loss of 10-20 g in the animals that received 10, 30, or 50
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mg/kg/day, but the organ-to-body weight ratio remained normal. Daily 

injections of 30 mg/kg or more of 1,1-dimethylhydrazine resulted in 

substantial and sustained diuresis throughout the experiment; the total 

urine output in these rats was more than twice that of the controls. A low 

white cell count occurred only in the one survivor of the 70-mg/kg group. 

Animals receiving 10 or 30 mg/kg/day had mean blood urea nitrogen (BUN) 

values similar to those of controls (about 15 mg/100 ml), but in the

animals given 50 mg/kg/day, the BUN value increased about 70%. 1,1-

Dimethylhydrazine administration caused a dose-dependent increase in SGOT 

activity. The average SGOT activities for the animals receiving 0, 10, 30, 

50, and 70 mg/kg/day were 47.2, 63.7, 79.8, 80.5, and 124 units,

respectively. Cloudy swelling and lipid infiltration were found in the 

renal tubules of the only surviving animal that received 70 mg/kg/day; less 

pronounced changes were observed at 50 mg/kg/day. Early degenerative fatty 

infiltration was found in the liver of the 70-mg/kg/day survivor; some 

control animals also showed similar changes.

In 1966, Wong [61] examined the effects of 1,1-dimethylhydrazine on 

the renal function of female mongrels. Creatinine and glucose were 

administered as described earlier for hydrazine to both the control and 

experimental groups, each containing six dogs [61]. 1,1-Dimethylhydrazine

was given iv to the experimental animals at 45 mg/kg. From 20-120 minutes 

after administration, the control and experimental creatinine clearance 

values were roughly the same, approximately 56 ml/minute. From 120-240 

minutes, the experimental group showed about a 10% elevation in creatinine 

clearance. No significant effect on urinary glucose resorption rates 

(approximately 170 mg/minute) was seen. The author found that 45 mg/kg of
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unbuffered 1,1-dimethylhydrazine produced no harmful effects in the kidneys 

that could be seen by the two tests used.

Another study by Van Stee [62], in which inulin and para- 

aminohippurate clearance rates were measured, also indicated that 1,1- 

dimethylhydrazine caused no significant changes in the renal function of 

dogs. However, three of eight dogs died with severe pulmonary edema and 

subsequent circulatory failure within 2 hours after being given 1,1- 

dimethylhydrazine.

In 1962, Reynolds et al [118] performed three experiments on Java 

monkeys to assess the effects of 1,1-dimethylhydrazine on shock avoidance. 

Before the experiments, the monkeys were trained in a shock avoidance test 

and matched according to performance. In the first experiment, two monkeys 

received 1,1-dimethylhydrazine ip at 30 mg/kg, the threshold dose for 

vomiting. Two control animals received saline injections. Eight 15-minute 

test sessions, given hourly, began 20 minutes after injection. In the 

second experiment, 3 weeks later, the same test procedure was repeated with 

the control and experimental groups reversed. In another experiment,

performed 60 days after the second experiment, three of the above monkeys

and one new one served as the experimental group, and the other monkey and

two new ones were controls. In all experiments, the number of lever-

presses/minute was used to measure shock avoidance. McNemar's comparison 

of change statistic was used to evaluate the results.

No controls in any experiment showed significant performance changes 

after saline injection [118]. The first experimental group had 

significantly more lever-presses/minute (P<0.001) than did either the 

controls or the experimental group themselves before injection. In the
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second and third experiments, no significant differences between the 

control and experimental groups were observed. One monkey in the third 

experiment had a significantly poorer performance (P<0.05); all others were 

normal.

In a second experiment, Reynolds and coworkers [119] administered

1,1-dimethylhydrazine ip at 30 mg/kg to four adult male Java monkeys 

trained to perform different and more difficult tasks from those in the 

previous study [118]. Two 2-day tests were conducted, with an intervening 

1-day rest period [119]. The monkeys were given a saline injection on the 

1st day and 1,1-dimethylhydrazine on the 2nd day. On each test day, 3- 

minute work and 2-minute rest periods were alternated and repeated for six 

to nine sessions. Performances on lever press, discrete avoidance, 

auditory monitoring, and visual monitoring were tested.

Although all monkeys developed toxic signs such as gagging, coughing, 

and vomiting, there were wide differences in individual responses on the 

performance tests [119]. Of the 32 possible performance combinations of 4 

monkeys, 2 injections, and 4 performance tasks, only 8 cases of significant 

performance decrement (P<0.05) were observed. Six of eight cases occurred 

3-3.5 hours after the second test replication, when the monkeys were ill. 

In all other cases, the monkeys performed normally, although some showed 

toxic signs. Both clinical illness and performance impairment disappeared 

between 6 and 9 hours after injection.

Thus, it appears that the impaired performance from 1,1- 

dimethylhydrazine intoxication was probably associated with the illness 

because it occurred earlier than did the performance decrement. It may be 

that repeated exposure to 1,1-dimethylhydrazine would more greatly affect
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primate behavior, since almost all impaired performances were observed 

after the second injection.

(2) Metabolism

In 1962, Mitz et al [120] studied the metabolism of 1,1- 

dimethylhydrazine. Six female Sprague-Dawley rats were given 14C-labeled

1.1-dimethylhydrazine ip at 40 mg/kg. Three animals were killed 30 minutes 

after injection and the remaining three after 4 hours. The brain, kidneys, 

liver, heart tissue, and carcass, as well as blood and urine samples, were 

analyzed for radioactivity. Approximately 19% of the injected dose was 

found in the urine after 4 hours. The liver and blood after 4 hours 

contained 3.7 and 2.7% of the injected 1,1-dimethylhydrazine, respectively; 

the other organs tested each had less than 1%. Since the remaining carcass 

contained only 51.2% of the radioactivity, a total recovery of 77.7% was 

reported. The distribution of 1,1-dimethylhydrazine 30 minutes after 

injection was similar but there was less radioactivity in the urine (5.7%), 

and it was higher in the carcass (75.8%). The authors did not give 

specific data for dogs but stated that dogs showed the same pattern 

observed in the rats. The authors also found that only about 2% of the 

injected radioactivity was lost by respiration. Analysis of the 

radioactive compounds in the urine confirmed the presence of three major 

metabolites. However, only two metabolites were identified. One was 1,1- 

dimethylhydrazine constituting 50-60% of the total radioactivity, and 

another 3-10% was glucose dimethylhydrazone.

Reed and associates [121] studied the metabolism and distribution of

1.1-dimethylhydrazine and the effects of this agent on glucose catabolism 

in Sprague-Dawley rats. For the metabolic studies, rats were injected ip
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with 14C-labeled 1,1-dimethylhydrazine at 20, 40, and 60 mg/kg and at 11 

mg/kg for the distribution studies. For glucose catabolism studieg, rats 

were administered 1.5 grams of glucose twice, 9 hours apart, by stomach 

tube. For the second administration, glucose was labeled with 14C at the 

first, second, third, fourth, or sixth position. The rats were 

simultaneously injected ip with 1,1-dimethylhydrazine at 40-60 mg/kg.

Seven hours after labeled 1,1-dimethylhydrazine administration, 23% 

of the original dose of 20 mg/kg was recovered as 14C carbon dioxide in the 

respired air, while 19 and 12% were recovered from the 40 and 60 mg/kg 

injection, respectively [121]. When rats were injected with labeled 1,1- 

dimethylhydrazine at 11 mg/kg, 12% was converted to respired carbon dioxide 

in 4 hours. About 25% of this dose was distributed in the body, while 43% 

was excreted in the urine in 4 hours. There was little, if any, 

preferential tissue uptake of 1,1-dimethylhydrazine.

In the glucose catabolism studies, 14C carbon dioxide formation from

different carbon atoms of glucose was altered by the administration of 1,1-

dimethylhydrazine [121]. 1,1-Dimethylhydrazine preferentially inhibited

glucose catabolism to carbon dioxide via glycolysis and the pentose 

phosphate pathway. A decarboxylation process of the sixth carbon, the 

glucuronate pathway, appeared to be unaffected by 1,1-dimethylhydrazine.

There appears to be some conflicting data reported by Mitz et al 

[120] and by Reed et al [121]. Although rats were similarly given an ip 

injection of 1,1-dimethylhydrazine at 40 mg/kg, Mitz et al found that only

2% was excreted in respired air, while Reed et al found that 19% was

expired as carbon dioxide in 7 hours. Reed et al used a more elaborate 

system to measure labeled carbon dioxide and used more rats in the
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experiment, so their data would seem to be more reliable.

Back et al [122] studied the absorption, distribution, and excretion 

of 1,1-dimethylhydrazine in a number of species. Twelve albino rabbits 

weighing 1.7-4.4 kg each were given 14C-labeled 1,1-dimethylhydrazine iv at 

50 mg/kg. Two rabbits each were killed at intervals from 2 to 24 hours 

after injection to determine the amount of radioactivity in major organs. 

There was no preferential concentration of 1,1-dimethylhydrazine in any of 

these organs, and retention remained high even at 24 hours. At 2 hours, 

28.3% of the dose could be accounted for, while 14.7% was accounted for at 

24 hours. Urine and tissue representing the bulk of the body weight were 

not analyzed, and this factor probably accounted for the low recovery.

To study the concentration of 1,1-dimethylhydrazine in the blood and 

urine, the authors gave 14C-labeled 1,1-dimethylhydrazine ip at 50 mg/kg to 

two dogs and two cats [122]. Fifteen to 60 minutes after injection, the 

amount of radioactivity in the blood reached a maximum that was about 13- 

14% of the original dose for dogs and 7-9% of that for cats. About half of 

this radioactive material was unchanged 1,1-dimethylhydrazine. As much as 

30-50% of the radioactive compound, believed to be unchanged 1,1- 

dimethylhydrazine, was excreted in the urine during the first 5 hours after 

injection. The percentage of the dose recovered in urine was similar for 

cats and dogs given 50 mg/kg of unlabeled 1,1-dimethylhydrazine iv, but in 

cats given 10 mg/kg only 11-28% was recovered in the urine in 6 hours.

As part of the same study [122], a number of rats, cats, dogs, and 

monkeys were injected ip with unlabeled 1,1-dimethylhydrazine at 1-100 

mg/kg, and the plasma concentrations of 1,1-dimethylhydrazine were 

determined colorimetrically. 1,1-Dimethylhydrazine at doses of less than
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10 mg/kg could not be detected in the plasma of monkeys. There was 

considerable individual variation, so that plasma concentrations were not a 

good indicator of dose. For example, 1 hour after injection, plasma 

concentrations of 1,1-dimethylhydrazine were 0.5-11.5 Mg/ml and 6.5-16.0 

Mg/ml in rats given 10 and 30 mg/kg, respectively. There was, however, a 

good correlation of the average concentration for a group with time. For 

example, in 15 monkeys given 100 mg/kg of 1,1-dimethylhydrazine, the 

average plasma concentrations at 1, 2, and 4 hours after injection were 

70.4, 52.9, and 33.9 /¿g/ml, respectively.

These experiments showed that 1,1-dimethylhydrazine was not 

preferentially concentrated in specific organs. Exposure was not 

accurately determinable from the 1,1-dimethylhydrazine concentration in 

blood; urinary concentration was a more sensitive indicator of exposure to

1,1-dimethylhydrazine.

(3) Carcinogenicity and Effects Related to Reproduction 

In 1973, Toth [123] reported on tumor formation in random-bred 

Swiss mice after oral administration of 1,1-dimethylhydrazine for life. A 

0.01% solution of 1,1-dimethylhydrazine in drinking water was given ad 

libitum to 50 male and 50 female mice starting at 5 weeks of age. The 

average daily intake of 1,1-dimethylhydrazine was 0.7 mg. The controls 

were 110 male and 110 female mice from a similar colony as reported in an 

earlier study [79].

The ingestion of 1,1-dimethylhydrazine in the drinking water 

significantly shortened the survival time of the experimental group [123]. 

At 60 weeks, only 13 male (26%) and 23 female (46%) mice given 1,1- 

dimethylhydrazine were still alive, compared with 55 male (50%) and 89

110



female (81%) control mice. Of the females given 1,1-dimethylhydrazine, 37 

(74%) developed blood vessel tumors at an average age of 59 weeks (range 

41-76). Forty-two of the experimental males (84%) developed blood vessel 

tumors at an average age of 42 weeks (range 35-66). There were 78 blood 

vessel tumors, characterized as angiosarcomas, found in the liver, 18 in 

the muscles, 11 in the heart, 7 in the lungs, 4 in the fat, 3 in the 

subcutis, and 1 each in the glandular stomach, the pancreas, and pararenal 

tissue.

Thirty-two (64%) of the female mice given 1,1-dimethylhydrazine 

developed 103 lung tumors, 96 of which were adenomas; 6 of these animals 

had, in addition, 7 adenocarcinomas [123]. The average age for tumor 

development was 62 weeks (range 44-76). In the exposed males, 39 (78%)

developed 119 lung tumors; they had a total of 115 adenomas and 4 of them 

also had an adenocarcinoma. The average age at which lung tumors were 

observed was 53 weeks (range 40-66).

Only one female mouse given 1,1-dimethylhydrazine developed a kidney 

tumor, which appeared at 60 weeks of age [123]. Of the experimental males, 

9 developed 11 kidney tumors at an average age of 59 weeks (range 42-66). 

Microscopically, some of these tumors were classified as cystic-papillary 

adenomas; others had developed into the solid form. Six males given 1,1- 

dimethylhydrazine developed benign hepatomas at an average age of 58 weeks 

(range 46-66).

In exposed females, seven malignant lymphomas were observed, an 

incidence of 14% [123]. These tumors occurred when the mice were 26-74 

weeks of age, with an average of 55 weeks. Microscopically, six lymphomas 

were classified as one lymphocytic type, one mixed lymphocytic and
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histocytic type, and four histocytic types; one could not be classified. 

One such tumor, first seen in exposed males aged 61 weeks, was classified 

microscopically as lymphocytic.

In summary, the tumor incidences in the blood vessels, lungs, 

kidneys, and liver were 79, 71, 10, and 6%, respectively [123],

Corresponding incidences in nonconcurrent controls were 2, 11, 0, and 0%.

Roe et al [78] also examined the carcinogenicity of 1,1- 

dimethylhydrazine. Virgin female Swiss mice were given 1,1- 

dimethylhydrazine by gavage at 0.5 mg/day, 5 days/week, for 40-60 weeks. 

There were 28 experimental mice and 85 controls. Necropsies were performed 

on some mice at 40-50 weeks, and there were two lung tumors in one of eight 

animals examined. There were 24 tumors in 4 of 9 animals examined at 50-60 

weeks. The control group had 2 tumors in 2 of 37 animals at 40-50 weeks 

and 9 tumors in 6 of 42 animals at 50-60 weeks. The tumors were classified 

as alveologenic or bronchiologenic adenomas or adenocarcinomas. The 

incidence of tumors in mice given 1,1-dimethylhydrazine was not 

statistically greater at the 95% confidence level than that observed in the 

controls. However, some mice developed multiple tumors, and the authors 

concluded that this finding supported the view that 1,1-dimethylhydrazine 

was tumorigenic. No mention was made of any studies on the fate of the 

remaining nine mice, so their cause of death is unknown, and possible 

tumors in other organs were not identified.

Kelly et al [81], in 1969, reported the results of a study on the 

carcinogenicity of hydrazine compounds, including 1,1-dimethylhydrazine. 

Thirty CDF1 male mice, aged 7-8 weeks, were given 1,1-dimethylhydrazine in 

8 weekly ip injections totaling 3.6 mg (120 mg/kg), and 30 females of the
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same age were given 8 oral doses totaling 7.2 mg (277 mg/kg). A group of 

10 males and 10 females given saline served as controls. After 28-32 

weeks, 1 of the 25 females (4%) examined and 1 of the 30 males (3%) 

developed lung tumors, while the controls had a tumor incidence of about 

10% in both sexes. The authors, therefore, concluded that 1,1- 

dimethylhydrazine was not carcinogenic in mice. While these results would 

appear to conflict with those of Toth [123] and Roe et al [78], the first 

lung tumor did not occur in Toth's study [123] until 35 weeks after 

administration, with the average latent period being 48 weeks, an 

experimental period longer than that used by Kelly et al [81]. The total 

dose used by Toth [123] was also much higher than that used by Kelly et al 

[81].

In 1976, Greenhouse [90] investigated the effects of several 

hydrazines, including 1,1-dimethylhydrazine, on the development of embryos 

of the South African clawed toad (Xenopus laevis). The animals were raised 

in aquatic media containing various concentrations of the test compounds.

1,1-Dimethylhydrazine at concentrations up to 1 mg/liter was neither toxic 

nor teratogenic to the exposed embryos, but at 10 mg/liter, 1,1- 

dimethylhydrazine was teratogenic to all embryonic stages (cleavage, 

gastrulation, neurulation, and tailbud). At 100 mg/liter, 1,1- 

dime thy lhydrazine was lethal. The most common malformations observed were 

foreshortening of the body and tail, tail kinks, and edema. A number of 

embryos also had abnormally small heads and brains. In a continuation of 

this study, Greenhouse [91] found that the embryos were susceptible to 1,1- 

dimethylhydrazine-induced teratogenicity only at the neurulation stage.
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Brusick and Matheson [109] investigated the mutagenicity of 1,1- 

dimethylhydrazine using the same assay techniques employed for 

methylhydrazine. In the Ames test, 1,1-dimethylhydrazine at concentrations 

of 0.01, 0.1, 1, 0, and 5.0 /zl/plate produced negative results with the 

mutant Salmonella typhimurium strains TA-1535, TA-1537, TA 1538, TA-98, and 

TA-100, and with Escherichia coli and Saccharomyces cerevisiae strains. 

These negative results were obtained without activation by liver 

microsomes. Except for marginally positive responses with TA-98 and 

possibly with TA-1538, negative responses occurred under activation 

conditions as well.

L5178Y mouse lymphoma cells were incubated with 0.01, 0.05, 0.1, and 

0.25 jul/ml of 1,1-dimethylhydrazine in the nonactivation tests and 0.005, 

0.01, 0.05, and 0.1 /il/ml of 1,1-dimethylhydrazine in the activation tests

[109]. A moderate dose-related response occurred in the nonactivation 

trials. In the activation tests, a 15-fold increase in mutation frequency 

occurred at the highest concentration of 1,1-dimethylhydrazine compared 

with negative controls.

Unscheduled DNA synthesis was evaluated in normal human diploid WI-38 

cells in tissue culture, and tritiated thymidine was incorporated into DNA 

to follow the synthesis [109]. There was no response without the addition 

of liver microsomes at 1,1-dimethylhydrazine concentrations of 0.1, 0.5,

and 1.0 ¿il/ml, but there was a positive effect in the microsomal activation 

tests. In the activation tests, the positive control, 2- 

acetylaminofluorene, produced a 430% response while 1,1-dimethylhydrazine 

produced responses of 186-237%, the lowest response resulting from the



highest concentrations. The authors attributed this inverted relationship 

to cellular toxicity.

In the dominant-lethal test, 3 groups of 10 male ICR mice, 7-8 weeks 

of age, were given 1,1-dimethylhydrazine ip at 1.25, 4.2, or 12.5 mg/kg

daily for 5 days [109]. Two days after the last dose, each mouse was caged 

with two virgin females for 5 days. The mating schedule was repeated with 

two new females each week for 8 weeks. Fourteen days after the middle of 

the mating period, each female was killed and examined for numbers of 

living and dead fetuses. There were no significant trends showing that

1.1-dimethylhydrazine produced dominant-lethal mutation.

(d) 1,2-Dimethylhydrazine

(1) Systemic Effects

In 1955, Jacobson et al [20] reported on the acute toxicity of

1.2-dimethylhydrazine. The LC50 was estimated to lie between 280 and 400 

ppm (686 and 980 mg/cu m). The toxic signs observed were similar to those 

previously described for hydrazine. The authors reported that short-term 

exposure caused primarily respiratory irritation and convulsions.

Rothberg and Cope [58] investigated the toxicity of 1,2- 

dimethylhydrazine in a manner identical to that already described for 

hydrazine. The LD50's in rabbits were 53.0 Ail/kg (43.8 mg/kg) from iv 

injection and 466 mg/kg by the percutaneous route. For guinea pigs, the 

LD50 for skin absorption was 131 mg/kg. There was no skin damage. When 3 

Hi of 1,2-dimethylhydrazine was placed in the eyes of two rabbits, only a 

mild conjunctivitis and slight erythema of the eyelid developed.

Weir et al [124], in 1964, reported on the acute toxicity of 1,2- 

dimethylhydrazine. Male Swiss-Webster mice were given 1>2-
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dimethylhydrazine dihydrochloride ip at pH 7 to determine mortality at 24 

and 168 hours. The LD50's were 940 mg/kg (425 mg/kg free base) at 24 hours 

and 47 mg/kg (21 mg/kg free base) at 168 hours. Some animals were 

hyperactive at low doses, but convulsions were observed only at doses above 

750 mg/kg. Convulsions alone and violent aggression usually started 90-170 

minutes after injection but death was delayed until about 48 hours except 

at very high doses. Mice that suffered delayed death showed decreased 

responsiveness and less spontaneous movement before dying. Because of the 

immediate and delayed signs of toxicity, the authors suggested that there 

might be two different toxic mechanisms involved.

Weir et al [125] later expanded their study to include the effect of 

the solution's pH on the toxicity of 1,2-dimethylhydrazine in mice, the 

LD50's for other species, and a study of hepatotoxicity. There was little 

difference between the LD50's in mice at 24 hours for hydrochloric acid as 

a control, 89 mg/kg, and unbuffered 1,2-dimethylhydrazine dihydrochloride, 

83 mg/kg as the free base dose. Both solutions had a pH of less than 1.0. 

However, with the pH of 1,2-dimethylhydrazine dihydrochloride adjusted to 

3, 7, and 11, the 24-hour LD50's were increased to 621, 462, and 245 mg/kg, 

respectively. This marked difference in toxicity led the authors to 

believe that the 24-hour toxicity of unbuffered 1,2-dimethylhydrazine 

dihydrochloride was largely caused by the hydrochloric acid. The 168-hour 

LD50's of hydrochloric acid and 1,2-dimethylhydrazine dihydrochloride, 

buffered or unbuffered, were similar, ranging from 32 to 54 mg/kg as the 

free base dose. A different mechanism from that of the 24-hour toxicity 

was suspected.
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Weir and coworkers [125] then compared the toxicity of 1,2- 

dime thylhydrazine in rats and dogs to that found in mice. When male Long- 

Evans rats, 150-225 g, and male mongrels, 5-8 kg, were given 1,2- 

dimethylhydrazine dihydrochloride ip at pH 7, the immediate and delayed 

toxicity in mice, previously observed, was not seen. The LD50's at 24 and 

168 hours, as free base doses, were 297 and 275 mg/kg for rats and 63 and 

53 mg/kg for dogs.

To examine hepatotoxicity, 10 male Long-Evans rats were given 1,2-

dimethylhydrazine dihydrochloride, adjusted to pH 7, ip at 495 mg/kg [125]. 

In addition, 2 groups of 10 male Swiss Webster mice were given 1,2- 

dimethylhydrazine dihydrochloride ip at 54 mg/kg unadjusted for pH or at 77 

mg/kg adjusted to pH 7. Control groups were injected with distilled water.

At 24, 48, 72, and 96 hours after injection, two animals from each group

were killed, and liver sections were removed and studied.

The livers of experimental rats showed moderate focal necrosis of an 

indefinite pattern and leukocyte infiltration [125]; the degree of change 

was not time-dependent. The livers of mice killed 24 hours after injection 

of buffered 1,2-dimethylhydrazine dihydrochloride showed marked 

vacuolization and granularity of the cytoplasm. At 48 hours, in addition 

to these effects, widespread areas of focal necrosis were noted. Liver 

tissues of mice killed 72 and 96 hours after injection showed areas of 

regeneration and vacuolization but no necrosis. Unbuffered 1,2-

dimethylhydrazine dihydrochloride caused more intense and persistent liver 

damage in mice than did the buffered form. Controls showed no liver

lesions at any time.
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The hepatotoxicity of 1,2-dimethylhydrazine dihydrochloride in 

several species was examined in 1976 by Wilson [126]. 1,2-

Dimethylhydrazine dihydrochloride, at pH 7.0, was given sc and, at an 

unadjusted pH, it was given by gastric intubation. Four groups of 6 to 8 

male miniature swine were given 8-10 weekly doses of 30 or 60 mg/kg with

and without pH adjustment. Four swine served as controls. Twenty-eight 

male dogs received oral or sc doses of 5-60 mg/kg for 2-10 weeks for a 

total dose of either 50, 105, or 120 mg/kg. Two dogs served as controls. 

Groups of 6 male Hartley strain guinea pigs each received 60 mg/kg for 7 

weekly doses or 30 mg/kg for 10 weekly doses by either route. Six guinea 

pigs were used as controls. Two groups of 10 male Sprague-Dawley rats were 

given oral doses of 30 mg/kg for 8 or 4 weekly doses. Six rats were used 

as controls.

In swine given 1,2-dimethylhydrazine dihydrochloride at 60 mg/kg,

only three animals survived past 10 weeks [126]. All those that died 

earlier had hemorrhagic, hepatic degeneration and necrosis. Jaundice, bile 

duct proliferation, and megalocytosis were common. Most of the swine given 

30 mg/kg survived, and when they were killed at 18 months, focal 

megalocytosis and postnecrotic fibrosis were observed in their livers. All 

dogs receiving 30-60 mg/kg died in the 2nd week, and all had jaundice, 

weight loss, hepatic degeneration, and hemorrhagic necrosis. Karyolysis in 

the hepatocytes was common. At 5 mg/kg, all dogs survived, but they had a

transitory loss of appetite and jaundice. At 18 months, necropsies

revealed postnecrotic hepatic fibrosis, hemosiderosis, and mild ascites. 

In guinea pigs, only one in each group receiving 60 mg/kg survived 8 

months, and each had developed bile duct carcinomas. Those dying early had
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extreme bile duct hyperplasia and hepatic necrosis. In the groups given 30 

mg/kg, all survived at least 11 months. They were killed when near death 

during the next 7 months, and all had hepatic fibrosis and ascites. Nine 

of these animals had bile duct carcinomas, and two had hepatomas. In all 

groups, the experimental rats survived, but 16 of 20 developed 56 tumors of 

the colon. Three had carcinomas of the ear canal. The development of 

colon tumors was inversely related to hepatotoxicity, although the tumors 

might have developed in other species had they survived longer.

(2) Carcinogenicity and Effects Related to Reproduction

Kelly et al [81], in 1969, studied the effects of the 

hydrazines, including 1,2-dimethylhydrazine dihydrochloride, on lung tumor 

formation. Thirty male CDF1 mice, 7-8 weeks old, were given 1,2- 

dimethylhydrazine dihydrochloride in 8 weekly ip injections totaling 5.3 mg 

(189 mg/kg), and 30 females of the same age were given a total of 10.6 mg 

(424 mg/kg) by gavage over 8 weeks. A group of 10 males and 10 females 

given saline served as controls. Ninety percent of the females died, and 

at 33 weeks, one (33%) of the remaining three had lung tumors. One male 

died and 3 (10%) of the remaining 29 developed lung tumors. About 10% of 

the control males and females developed similar tumors. The authors 

concluded that 1,2-dimethylhydrazine was not carcinogenic in mice. 

However, the number of females surviving the toxicity of the compound was 

insufficient to draw any conclusion on long-term tumorigenic effects, and 

only lung tumors were examined.

In 1971, Toth and Wilson [127] reported on blood vessel tumors 

induced in mice by 1,2-dimethylhydrazine dihydrochloride. A 0.001% 

solution of the compound in drinking water was given to 50 male and 50
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female randomly bred Swiss albino mice for life, starting at 7 weeks of 

age. The average daily intake of 1,2-dimethylhydrazine dihydrochloride was 

0.058 mg for females and 0.087 mg for males. Controls consisted of 110 

males and 110 females. All organs were examined macroscopically, and 

microscopic studies were performed on any gross, abnormal changes.

The lifespan of mice given 1,2-dimethylhydrazine dihydrochloride was 

considerably shortened when compared with that of the previously studied 

controls; 81% of the female and 50% of the male controls were alive at 60 

weeks of age, while all of the exposed mice had died [127]. Subcutaneous 

generalized edema, hemoperitoneum, and anemia were noted in experimental 

mice. Forty-nine of the 50 exposed females (98%) developed blood vessel 

tumors at an average age of 45 weeks (range 28-58 weeks). Forty-six of the 

50 males (92%) developed blood vessel tumors at an average of 42 weeks 

(range 29-58 weeks). The control group had a blood vessel tumor incidence 

of 3.6% in females and 1.8% in males at average ages of 68 and 76 weeks, 

respectively. The major locations of blood vessel tumors in females, in 

order of decreasing frequency, were 40 in the muscle, 37 in the liver, 36 

in pararenal tissue, 32 in the fat, and 15 in parametrial tissues, while in 

the males the corresponding numbers were 39 in pararenal tissue, 37 in the 

muscle, 36 in fat, 28 in paraepididymal tissues, 26 in the liver, 15 in the 

subcutis, and 12 in the lymph nodes. The blood vessel tumors were 

classified as angiosarcomas.

Of the 50 females given 1,2-dimethylhydrazine dihydrochloride, 22 

(44%) developed 35 lung tumors, all adenomas, at an average age of 49 weeks 

(range 31-58) [127]. Twelve of the 50 males (24%) developed 17 lung

tumors, all adenomas except for 1 adenocarcinoma, at an age of 44 weeks
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(range 29-58). Controls had lung tumor incidences of 13% in the females 

and 10% in males, at an average age of 90 and 74 weeks, respectively. The 

average latent period for lung tumor formation, about 40 weeks, in this 

experiment [127] was longer than the 33-week observation period of Kelly 

and coworkers [81], so that the results of the two papers are not 

necessarily inconsistent.

In another study of identical experimental design, conducted by the 

same investigative group [85], blood vessel tumors (85% incidence), 

classified as angiosarcomas, were induced in Syrian golden hamsters given

1,2-dimethylhydrazine dihydrochloride at about 0.16 mg/day. An increased 

incidence of cecal tumors (23%), mostly adenomas, and liver tumors (17%), 

both benign and malignant, was also found; however, lung tumors were not 

present.

In 1976, Toth and coworkers [128] reported on the induction of tumors 

in mice following sc injection of 1,2-dimethylhydrazine dihydrochloride. 

One group of 50 male and 50 female Swiss mice, 5 weeks old, were injected 

sc at a single dose of 20 mg/kg; a similar group received 10 injections. 

One hundred male and 100 female mice reported on earlier [129] were used as 

controls.

Repeated injection of 1,2-dimethylhydrazine dihydrochloride

drastically reduced the survival rate, but single injection reduced it only 

slightly [128]. Of the mice given a single injection, one female (2%) and 

one male (2%) each developed a tumor of the cecum. Of the animals given 

repeated injections, 41 of 50 females (82%) developed 130 tumors of the 

large intestine at an age of 29-90 weeks, while of the males, 45 (90%)

developed 156 tumors of the large intestine at 32-77 weeks of age. In both
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males and females, polypoid adenomas and adenocarcinomas of the cecum, 

colon, and rectum were found, with the tumors occurring most frequently in 

the cecum adjacent to the ileum, in the lower part of the colon, and in the 

rectum. There were no tumors of the large intestine in the control group.

Blood vessel tumors, classified as angiomas or angiosarcomas, were 

found in 10 females (20%) and 12 males (24%) of the single injection group 

[128]. Most of the tumors were in the liver. Of the mice given 10 

injections, 23 females (46%) and 25 males (50%) developed blood vessel 

tumors. Eight females had angiomas and 15 had angiosarcomas. The tumors 

were found, in decreasing order of frequency, in the following organs: 

liver, lungs, muscle, fat, lymph nodes, uterus, ovaries, and kidneys. In 

the males, 22 had angiosarcomas, and 3 had angiomas. In decreasing order 

of frequency, the liver, paraepididymial tissues and muscle, fat, pararenal 

tissues, subcutaneous tissues, lymph nodes, kidneys, brain, lungs, and 

spleen were affected. In the control group, 5% of the females and 6% of 

the males developed blood vessel tumors.

Fourteen of the females (28%) given a single injection of 1,2- 

dimethylhydrazine dihydrochloride developed 16 lung tumors, and 15 of the 

males (30%) developed 24 lung tumors [128]. All tumors were adenomas 

except for four cases in which the mice had a total of six adenocarcinomas. 

Of the animals receiving repeated injections, 24 females (48%) developed 62 

lungs tumors, 3 of which were adenocarcinomas. In addition, 19 males (38%) 

developed 26 adenomas of the lungs. In the control groups, 21% of the 

females and 23% of males developed lung tumors.

Of the animals given 10 weekly injections of 1,2-dimethylhydrazine 

dihydrochloride, 3 (6%) females and 24 (48%) males developed kidney tumors,
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mostly adenomas [128], Tumors of the anus were also found in 12% of the 

females and in 16% of the males.

Toth and Wilson [127] had reported in another study that 1,2- 

dimethylhydrazine dihydrochloride in drinking water given to mice caused 

mainly blood vessel tumors. In this study [128], however, injected 1,2- 

dimethylhydrazine dihydrochloride induced tumors of the large intestine and 

lungs as well. The authors suggested that this was caused by differences 

in routes of administration, resulting in different metabolism.

In a study designed to detect the effects of vitamin A on colon 

cancer, Rogers et al [130] induced tumors by gastric intubation of 1,2- 

dimethylhydrazine in male Sprague-Dawley rats. Three groups of rats were 

given 1,2-dimethylhydrazine at total doses of 420, 275, or 197 mg/kg over 

18 weeks. An equal number of controls were given 0.9% saline. In 

addition, animals of each group were fed normal diets, diets deficient in 

vitamin A, or diets supplemented with vitamin A. At 420 mg/kg, 10 of 14 

rats developed carcinomas of the gastrointestinal tract and the colon. At 

275 mg/kg, 48 of 62 rats had the same types of tumors. At the lowest dose, 

8 of 10 rats had carcinomas of the gastrointestinal tract and 6 had 

carcinomas of the colon. In all 86 rats, there were, in addition, 3 

hemangiosarcomas, 19 carcinomas of the ear canal, 2 hepatocarcinomas, and 1 

embryonal nephroma. The results were reported only on rats retained 18-30 

weeks after administration of the first dose, and there was no effect on 

tumor incidence attributable to vitamin A.

Druckrey [131], in 1970, reported a study of the production of 

carcinomas by 1,2-dimethylhydrazine dihydrochloride. The compound was 

given to 2 groups of 13 BD rats sc at a weekly dose of 15.6 or 47 mg/kg for
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36 weeks. An additional group of 14 BD rats was given 47 mg/kg by

intubation weekly for 11 weeks, and another was given 6.7 mg/kg in drinking

water daily for 5 days/week, for 11 weeks.

After 3-4 months, the rats given 1,2-dimethylhydrazine 

dihydrochloride sc at 47 mg/kg developed diarrhea, weight loss, and 

jaundice; some rats developed a prolapse of the tumorous rectum [131]. All 

13 rats died with what was described as multiple malignant intestinal 

cancer; 5 had multiple tumors of both the colon and rectum, 5 had colon 

tumors, and 3 had rectal tumors. The median latent period was 26 weeks, at 

which time a total dose of 517 mg/kg had been given. Additional tumors 

were found in the duodenum of seven rats, in the small intestine of four,

and in the liver of two. Twelve rats that received 15.6 mg/kg developed

tumors of the colon, 6 had rectal tumors, and 2 had duodenal tumors. The 

median latent period for these tumors was 48 weeks. All tumors were 

classified as adenocarcinomas, often associated with polyps in all stages 

of progressing malignancy. They reportedly bore striking resemblance to 

human colonic and rectal carcinomas.

One of 14 rats given 1,2-dimethylhydrazine by stomach tube died of 

pneumonia; the remaining 13 died with multiple colonic carcinomas [131]. 

In ad' ition, four had rectal carcinomas, three had duodenal tumors, one had 

a nephroblastoma, and six had pronounced cystic degeneration of the liver. 

In the rats given 1,2-dimethylhydrazine iri drinking water, only 

hemangioendotheliomas of the liver with multiple metastases to the lungs 

were found. The difference in organ response caused by sc and oral 

administration of 1,2-dimethylhydrazine was attributed to metabolic 

activation in the liver. Druckrey suggested that, in animals, 1,2-
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dimethylhydrazine was first enzymatically oxidized to methylazoxymethanol 

and then converted to methylating carcinogens, including 

methyldiazohydroxide and methyldiazonium hydroxide. Azoxymethane, a

derivative of 1,2-dimethylhydrazine, was also studied and was found to 

induce tumors similar to those caused by 1,2-dimethylhydrazine.

Many other investigators [132-143] have used sc injections of 1,2- 

dimethylhydrazine to study the induction of colon cancers. Colonic tumors 

have been induced in CF1 [132,133], NMRI [134,135], and Swiss [136] strains 

of mice and in BD rats [137], but one group of investigators [136] was 

unable to induce tumors in C57/B mice. A strain specificity in germ-free 

rats was also reported [138], Sprague-Dawley rats being more susceptible to 

colon tumor induction than Buffalo rats; the Wistar strain was the least 

susceptible. Differences in tumor induction between rats and mice have 

been noted [139]. Germ-free rats have been used to determine the effects 

of bacterial flora in the intestine, and Reddy et al [140] reported a 20% 

incidence of colonic tumors in germ-free rats as compared with a 93% 

incidence in conventionally raised animals. Tumors of the ear canal, 

kidneys, and small intestine were also found in the conventional rats. The 

effects of diet have also been considered. Rats fed a high-fat diet had a 

higher incidence of colonic tumors than those on normal or low-fat diets 

[138,141]. Rats fed cholestyramine developed more colonic tumors with a 

greater concentration in the distal end of the colon than did regularly fed 

rats [142], Mice fed disulfiram concurrently with 1,2-dimethylhydrazine 

injection failed to develop colonic tumors, whereas 100% of the other 

animals did [143],
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The previously mentioned study by Greenhouse [90] on the effect of 

hydrazines on the embryonic development of the South African clawed toad 

included 1,2-dimethylhydrazine. Continuous exposure of the embryos and 

larvae to 1,2-dimethylhydrazine at concentrations up to 10 mg/liter had no 

toxic effects. Continuous exposure at 100 mg/liter beginning at the 

blastula stage was toxic to all exposed embryos; by 2 weeks, 50% of the 

embryos were dead and the rest had tail malformations. Cleavage stage 

embryos were then exposed to aqueous media containing 1,2-dimethylhydrazine 

at various concentrations and malformations were counted at the hatching 

stage [91]. At concentrations of 10, 20, 40, 50, and 80 mg/liter, 4, 4, 5, 

100, and 100%, respectively, of the exposed embryos were malformed.

(3) Metabolism

Fiala et al [144] identified metabolites of 1,2- 

dimethylhydrazine exhaled by rats. Male F344 rats, kept in metabolism

cages, were given 14C-labeled 1,2-dimethylhydrazine sc at 21 or 200 mg/kg, 

and expired air was analyzed for azomethane and carbon dioxide.

At 21 mg/kg, 11% of the administered dose was metabolized to carbon 

dioxide and 14% to azomethane in 24 hours [144]. The corresponding figures 

at 200-mg/kg were 4 and 23%, respectively. Azomethane, detected almost 

immediately after injection, reached about 90% of its 24-hour value in 4-5 

hours. In the same time, carbon dioxide recovery was only 60% of its 24- 

hour level. This lag in carbon dioxide production was interpreted as being

caused by the time required for complete metabolism of 1,2-

dime thy lhydrazine .

That azomethane was found to be a major metabolite of 1,2-

dime thy lhydrazine, and that it was present in the exhaled air gives support
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to Druckrey's hypothesis [131] that 1,2-dimethylhydrazine is metabolically 

activated. Fiala et al [144] also noted that, if azomethane itself is a 

carcinogen, investigators handling large numbers of animals given 1,2- 

dimethylhydrazine should take special precautions to avoid exposure.

(e) Phenylhydrazine

(1) Systemic Effects

In 1935, Bolton [145] described changes in the blood cells of 

a dog weighing 16.2 kg and given phenylhydrazine hydrochloride at 18.5 

mg/kg by stomach tube daily for 4 days. Blood counts were determined 

before phenylhydrazine administration and intermittently for the next 16 

days. On the day of the last phenylhydrazine administration, the 

erythrocyte count had decreased 25% from the baseline value. Four days 

later it was reduced by 79%, and the hemoglobin concentration was less than 

18% of the initial value. On the next day, the leukocyte count had 

increased from the preexposure level of 12,000/cu mm to 45,000/cu mm. Two 

weeks after the last dose was given, the leukocyte count was normal and the 

erythrocyte count was 90% of the baseline value.

In 1936, Von Oettingen and Deichmann-Gruebler [146] reported their 

study on the pharmacologic action of phenylhydrazine and its derivatives in 

mice and rats. Groups of mice were injected sc with phenylhydrazine at 

170, 180, and 200 mg/kg. At 170 mg/kg, 45% of the mice died within 70 

minutes. Phenylhydrazine at 180 and 200 mg/kg killed all the exposed mice 

in 50 and 40 minutes, respectively. The authors stated that the minimum 

lethal dose for rats, determined essentially the same way, was the same 

although they did not present supporting data. Phenylhydrazine in toxic 

doses produced progressive cyanosis, irregular and spasmodic respiration,
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progressive depression, and asphyxial convulsions in mice and rats. In 

another part of this study, an ointment containing 1% phenylhydrazine was 

applied to a shaved area on the backs of five rats every other day. The 

rats lost an average of 15 g of body weight in 7 days, but microscopically 

the internal organs appeared normal. In a third phase of this study, one- 

tenth the minimum lethal dose injected sc into rats once a day for 3 days 

produced a 63% reduction in the number of erythrocytes by day 5.

In 1965, Ekshtat [16] determined the oral LD50 of phenylhydrazine in 

six guinea pigs, six rabbits, and an unstated number of mice and rats. The 

LD50’s reported were 175 and 188 mg/kg for mice and rats, respectively, and 

80 mg/kg for both rabbits and guinea pigs. Toxic signs reported were motor 

excitation and tonic-clonic convulsions.

Witchett [147], in 1975, reported the effects of phenylhydrazine on 

erythrocytes. Three male beagles were given phenylhydrazine sc at 20, 30,

or 40 mg/kg for 2 consecutive days. Two dogs were used as controls. Blood 

was drawn daily from 4 days before exposure until death. On the 5th day, 

all survivors were killed.

Hemoglobin concentration, hematocrit value, and erythrocyte count 

were significantly reduced at the two lower doses [147]. The dog given the 

highest dose died shortly after the second injection. Hethemoglobin was 

present in the blood of all three dogs, but leukocyte count and blood 

glucose concentration were normal. Reduced glutathione levels were 

decreased 2 hours after the first injection and 30-40% of the erythrocytes 

contained Heinz bodies; by 24 hours, they were present in 95-100% of the 

erythrocytes. Reticulocytes could not be counted because of the presence 

of Heinz bodies. The day after the second injection, the urine of the two
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surviving dogs contained blood, and nearly 100% of their erythrocytes 

contained Heinz bodies. At necropsy, the internal organs were dark brown 

and the spleen, liver, and kidneys were severely congested. Large amounts 

of blood pigments were found in these organs, and the spleen was three to 

five times the normal size. The Kupffer cells in the liver and the 

epithelium of the convoluted tubules of the kidneys were hypertrophied and 

filled with blood pigment, apparently hemoglobin. There was also a 

striking reduction of spermatogenesis.

Chen and Weiss [148] investigated the effects of phenylhydrazine 

administration on the spleen of rats. Male Sprague-Dawley rats were given 

phenylhydrazine hydrochloride ip at 100 mg/kg and saline injected rats 

served as controls. Groups of five rats were killed 4 and 12 hours and 1, 

3, 5, and 7 days after injection. Blood samples were collected when the

animals were killed, and the spleen was examined by electron microscopy.

All experimental rats developed acute anemia [148]. By day 3, the 

hematocrit value had decreased from 45 to 25%, but it subsequently 

increased to near normal by the 7th day. Spleen weights in experimental 

rats were three times those in controls by day 5 and remained higher than 

usual throughout the experiment. Cells containing Heinz bodies were found 

to impede the passage of normal erythrocytes through the walls of the 

splenic sinuses. When the passageways were occupied because of delayed 

clearance of damaged erythrocytes, circulation through the spleen was 

impaired. Damaged cells accumulated in the cords, and coincidentally the 

number of macrophages also increased. The authors concluded that these 

factors contributed to the development of splenomegaly.
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Saterborg [149] investigated bone marrow response to phenylhydrazine- 

induced anemia. Colloidal 198Au was used to determine the transformation 

of fatty, inactive marrow to active marrow capable of hematopoiesis. 

Eighteen rabbits, given phenylhydrazine hydrochloride at a daily iv dose of 

2.5 mg, were killed at various intervals up to 45 days. Before they were 

killed, the animals were injected with colloidal 198Au and blood samples 

were taken. In 4-6 days, the reticulocyte count was raised, and it 

eventually increased to 50%. By day 10, the uptake of colloidal gold in 

the tibia was three times that of the controls. Hyperemia and capillary 

proliferation were found in an additional group of rabbits that received 

phenylhydrazine for 6-14 days. In those rabbits given phenylhydrazine for 

14 days, a small area of fatty marrow, dilatated vessels and bleeding were 

seen. Immature hematopoietic cells were frequently found in dilatated 

blood vessels. The author concluded that phenylhydrazine was effective in 

causing the blood destruction that stimulated the transformation of yellow 

marrow to red active marrow. Toxic effects, not otherwise defined, were 

also observed in the liver, but hemolysis, not the secondary hepatic 

injury, was considered the cause of the bone marrow stimulation.

(2) Metabolism

In 1958, Mclsaac et al [150] reported a study of the 

metabolism of phenylhydrazine. Groups of Chinchilla doe rabbits were given 

14C-labeled phenylhydrazine hydrochloride at 50 mg/kg orally, and their 

urine was collected. Urinary excretion was measured in seven rabbits for 

up to 10 days and two were killed after 4 days to determine the 

distribution of phenylhydrazine in tissues. The metabolites in the urine 

were purified by extraction and descending chromatography, located by
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autoradiography, and identified by spray reagents. The amount of each 

metabolite in 2-day urine samples from four rabbits was then determined by 

isotope dilution. All radioactivity was measured on infinitely thick 

samples using an end window counter.

The urine of rabbits given phenylhydrazine hydrochloride at 50 mg/kg 

was dark brown, had a pH of 9, and reduced Benedict's solution [150]. 

Thirty-four percent of the dose was excreted in the urine in 1 day. By the 

4th day, 50% was recovered, and excretion continued more slowly for at 

least 10 days. Only small amounts were found in any tissue. On the 4th 

day of a separate experiment, 10% of the phenylhydrazine was found in the 

erythrocytes, compared to 59% in the urine.

The authors determined from autoradiography that pyruvic acid 

phenylhydrazone and oxoglutaric acid phenylhydrazone were present in the 

urine [150]. They confirmed this finding by adding a known amount of each 

compound, labeled with 14C, to the urine of animals which received 

unlabeled phenylhydrazine hydrochloride. After considering the total 

weight and percentage of radioactivity recovered after purification, the 

authors determined that these two hydrazones were in the urine. A third 

compound was identified as p-hydroxyphenylhydrazine glucuronide. Isolation 

of a derivative prepared from a urine sample supported this finding. A 

fourth component found by autoradiography was not identified. Isotope 

dilution studies were conducted and showed that 17.2% of the given dose was 

excreted within 2 days in the urine as p-hydroxyphenylhydrazine, 8.5% as 

pyruvic acid phenylhydrazone, and 5.2% as oxoglutaric acid phenylhydrazone; 

these compounds accounted for 79% of the total radioactivity in the urine.
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The authors [150] concluded that the main metabolic reactions of 

phenylhydrazine in rabbits were hydroxylation of the ring and subsequent 

conjugation and reaction with keto acids. They also noted that there was 

no evidence of acetylation or decomposition to aniline or benzene.

(3) Carcinogenicity and Effects Related to Reproduction 

In 1966, Clayson et al [151] reported the results of a study 

on the induction of lung tumors in BALB/c mice by phenylhydrazine. 

Phenylhydrazine hydrochloride was administered to 30 mice of both sexes at 

a daily dose of 1 mg via stomach tube 7 times a week for 42 weeks; the 

total dose reported was 200 mg instead of the expected 294 mg because 

administration was suspended if the mice showed signs of toxicity. Thirty 

mice were used as controls; a control mouse of similar age was killed 

whenever an exposed mouse died and both were examined.

Sixteen (53%) of the mice given phenylhydrazine hydrochloride 

developed lung tumors, compared with 4 (13%) of the control group [151], 

The average number of lung tumors in each tumor-bearing mouse was 1 in the 

control group and 1.5 in the exposed group. Of the 24 tumors found in the 

exposed group, 17% (4) were carcinomas, 42% (10) were adenomas, and 42%

(10) were described as adenomas becoming malignant. Clayson et al 

concluded that phenylhydrazine hydrochloride was a weak carcinogen, 

although they pointed out that a relatively high percentage of the tumors 

induced were malignant.

In 1967, Roe and coworkers [78] reported a study on the 

carcinogenicity of several hydrazines, including phenylhydrazine, on groups 

of 25 virgin female Swiss mice. Phenylhydrazine in doses of 0.5-0.25 mg/kg 

was given by gavage 5 days/week for 40 weeks. At weeks 40-50 or 50-60, 17
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surviving mice were killed, and no lung tumors were found. The authors 

concluded that phenylhydrazine was not carcinogenic. However, six mice 

were apparently not examined and only lung tumors were considered.

Kelly et al [81] conducted similar experiments on the carcinogenicity 

of phenylhydrazine. Thirty male CDF1 mice, 7-8 weeks old, were given 8 

weekly ip injections totaling 11.6 mg (387 mg/kg) of phenylhydrazine 

hydrochloride. Thirty females of the same age were given phenylhydrazine 

hydrochloride in 8 weekly oral doses totaling 23.2 mg (892 mg/kg). Ten 

male and 10 female mice given saline served as controls. Of the surviving 

experimental females, 14% developed lung tumors by 28 weeks, while 13% of 

the surviving males had lung tumors at 26 weeks. The corresponding 

incidences in the controls were 10 and 11%, respectively. Since the 

difference in the incidence of lung tumors was not significant, Kelly et al 

concluded that phenylhydrazine was not carcinogenic in mice. This 

conclusion is weakened by the fact that all animals were killed by 33 weeks 

and only the possibility of lung tumors was examined.

Shimizu and Toth [152], in 1976, reported the tumorigenic effects of 

phenylhydrazine hydrochloride in Swiss mice given a 0.01% solution in 

drinking water for life starting at an age of 5 weeks. The average daily 

consumption of phenylhydrazine hydrochloride was 0.63 mg for 50 females and 

0.81 mg for 50 males. Data obtained previously from 100 controls of each 

sex were used for comparison [129].

Of the experimental mice, 11 females (22%) developed blood vessel 

tumors at an average age of 71 weeks, and 10 males (20%) developed such 

tumors at an average age of 87 weeks [152] . In the controls, five females 

(5%) and six males (6%) developed blood vessel tumors. The increased tumor
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incidence in the experimental group was statistically significant, with 

P<0.008 for females and P<0.02 for males. These blood vessel tumors, 

classified as angiosarcomas and angiomas, were found in the liver, spleen, 

and ovaries. Lung tumors, malignant lymphomas, hepatomas, and a few other 

tumor types were also found, but their incidences were not significantly 

different than those of the controls.

Tamaki et al [153] investigated the functional disturbances of 

offspring of rats given phenylhydrazine hydrochloride during pregnancy. 

Some pregnant Wistar rats received phenylhydrazine hydrochloride ip at 10 

mg/kg on days 17-19 of pregnancy, while others received 20 mg/kg ip on days 

18 and 19. Twelve male offspring with severe jaundice and anemia at birth 

were chosen for subsequent experiments. Nine normal males served as 

controls. Testing began when the pups were 9-22 weeks of age. The general 

reflexes of 7 control and 8 experimental rats were examined, the 

spontaneous activity of 8 control and 12 experimental animals was monitored 

over 24 hours, and 4 control and 4 experimental rats were used to test the 

acquisition and extinction of conditioned avoidance-escape behavior.

No performance differences were observed between the offspring of the 

two groups of experimental dams, and there were no significant differences 

between control and experimental groups in tests of general reflexes or of 

spontaneous activity. In the conditioned avoidance tests, the experimental 

group was significantly retarded (P<0.05) in response acquisition and speed 

of acquisition, and, during the extinction phase of the test, it lost the 

response significantly faster (P<0.05). This extinction factor was
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interpreted as evidence that acquired behavior was less stable in the 

experimental than in the control rats.

The authors [153] concluded that phenylhydrazine injected during 

pregnancy may adversely affect the performance of the offspring in certain 

areas of learning by inducing severe neonatal jaundice and anemia. The 

possibility that phenylhydrazine might act directly on the developing CNS, 

or that the learning deficit might be a result of the combination of the 

direct and secondary effects are questions not discussed by the author. It 

seems that anemia accompanied by jaundice more likely represents fetal 

toxicity and not teratogenicity; however, to induce terata experimentally, 

injection should occur at an earlier stage of pregnancy.

Correlation of Exposure and Effect

Little information is available on humans exposed to the hydrazines, 

so that the toxic effects that would be expected to occur in humans must be 

established from animal studies. There are both striking similarities and 

dissimilarites in the effects produced by these structurally related 

compounds. Judging from animal studies, one finds that the major sites 

affected appear to be the skin and eyes, the CNS, the liver, the blood, and 

the kidneys. These effects, along with odor thresholds, metabolism, and 

changes in biochemical function, are compared for each compound in the 

following sections, and relevant human information is presented where 

available.

(a) Skin and Eyes

Dermatitis has been observed in humans who had contact with hydrazine 

hydrate [38,39], its monohydrochloride [40], sulfate [37], and hydrobromide
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[41] salts, and phenylhydrazine [54] and its hydrochloride salt [36]. The 

degree of skin response to hydrazine and its salts ranged from irritation 

[40] through mild maculopapular erythema [41]. Contact with 

phenylhydrazine hydrochloride caused itching, swelling of the fingers, 

vesicle formation, and desquamation of the hands [36]. In the above- 

mentioned reports, repeated contact with the hydrazines appeared to 

sensitize individuals to varying degrees. No reports of dermatitis were 

found for methylhydrazine, 1,1-dimethylhydrazine, 1,2-dimethylhydrazine, or 

any of their salts.

The absorption of certain hydrazines through the skin was examined in 

animals. Hydrazine [59], methylhydrazine [98], or 1,1-dimethylhydrazine 

[115] applied to the shaved skin of dogs was rapidly absorbed, and the dogs 

developed toxic signs. Absorption through the skin and subsequent systemic 

toxicity are probably dependent on two factors: the amount of the

hydrazine compound that can penetrate the outer layers of the skin and the 

rate of evaporation from the skin. In the absence of any other 

information, it seems reasonable to conclude that 1,2-dimethylhydrazine and 

phenylhydrazine would also be absorbed through the skin. While the free 

bases may be more or less irritating to the skin than the salts, because of 

pH, there is no good reason to doubt that salts will also penetrate the 

skin.

The LD50 doses reported for skin absorption in animals seem to some 

extent to be related to the vapor pressures of the hydrazines. Two drops 

of anhydrous hydrazine applied to the skin of rats was fatal [57] . In 

guinea pigs, the LD50 dose was 190 mg/kg; in rabbits, it was 93 mg/kg [58]. 

For methylhydrazine, the LD50 for topical application was about 180 mg/kg
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in rats [97], 47 mg/kg in guinea pigs, and 93 mg/kg in rabbits [58]. For

1,2-dimethylhydrazine, the LD50 was 131 mg/kg in guinea pigs and 466 mg/kg 

in rabbits [58], compared to 1.2-1.7 g/kg in dogs [115], 1.05 g/kg in

rabbits, and 1.31 g/kg in guinea pigs [58] for 1,1-dimethylhydrazine.

Adverse effects have also been reported in animals when certain 

hydrazines were placed in the eyes. Hydrazine concentrations of 25% or 

greater were reported to cause severe, irreversible eye damage [57]. 

However, methylhydrazine [58], 1,1-dimethylhydrazine [114], and 1,2-

dimethylhydrazine [58] caused only a mild conjunctivitis and slight 

reddening of the eye. These effects, to a large extent, may be related to 

the alkalinity of the compounds; for example, hydrazine has a pKa of 8.07 

compared to 7.21 for 1,1-dimethylhydrazine [11]. Thus, the relative degree 

of expected eye damage for phenylhydrazine and the salts of hydrazines may 

be related to their respective acidity or basicity.

(b) Odor Detection

The odor threshold ranges have been reported to be 3-4 ppm for 

hydrazine, 1-3 ppm for methylhydrazine, and 6-14 ppm for 1,1- 

dimethylhydrazine [20]; in another study, the odor threshold for 1,1- 

dime thy lhydrazine was reported to be less than 0.3 ppm [48]. There are 

probably insufficient warning properties to afford adequate protection 

against long-term exposure by reliance on odor, and variations in odor 

thresholds from such factors as odor fatigue argue against reliance on odor 

for warning of toxic exposure. However, the odor of these three compounds 

should alert the worker to the need to leave a contaminated area. 

Phenylhydrazine was reported to have a faint aromatic odor [10] as compared 

to the ammoniacal, fishy odor of the others [5], Thus, it is improbable

137



that the odor of phenylhydrazine is sufficiently detectable to be of any 

protective value.

(c) Central Nervous System

There is only one report [42] on the acutely toxic effects of 

hydrazines on humans. A man who accidentally swallowed an unknown quantity 

of hydrazine developed pupil dilatation, vomiting, and loss of 

consciousness, followed by "sporadic violence" and paresthesia.

In animals, the acute toxicity of the hydrazines includes effects in 

the CNS. Acutely toxic signs observed following the inhalation of 

hydrazine, methylhydrazine, 1,1-dimethylhydrazine, and 1,2-

dimethylhydrazine include restlessness, breathing difficulties, and 

convulsions [20]. Other signs included vomiting, salivation, panting, and 

incoordination in animals exposed to methylhydrazine [20,92] and vomiting 

and lethargy preceding restlessness in animals exposed to 1,1- 

dimethylhydrazine [110,111]. Noise increased or hastened toxic signs

[111]. No information on acutely toxic effects following the inhalation of 

phenylhydrazine was found. Rodents injected sc with phenylhydrazine

developed progressive cyanosis, breathing difficulties, and convulsions 

[146], but this may not reflect CNS toxicity.

(d) Liver

Certain hydrazines are hepatotoxic. The long-term inhalation of 

hydrazine at exposures as low as 30 ppm-hours/week resulted in severe fatty 

degeneration of the liver in mice [56]. Monkeys may have been affected 

likewise, but controls showed similar results at necropsy. Liver damage in 

dogs occurred at higher exposures, about 150 ppm-hours/week; rats' livers
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were not affected. Similar effects were observed in these species after ip 

injections [60].

Dogs that inhaled methylhydrazine at 6-30 ppm-hours/week developed 

cholestasis in the liver; effects at higher doses were similar but more 

severe [94]. At 16.8 ppm-hours/week, livers of dogs were passively 

congested [95].

In one study of animals that inhaled 1,1-dimethylhydrazine at 150- 

4,200 ppm-hours/week, no fatty vacuolization of the liver was found [110],

but in another study SGPT activity and BSP retention time were

significantly increased in dogs exposed at 150 ppm-hours/week [112]. 

Similar but less severe results were observed at 15 ppm-hours/week; livers 

were normal at 1.5 ppm-hours/week [112]. However, these hepatotoxic 

effects may have been caused by the trace amount of nitrosodimethylamine 

present in the compound used [113]. Fatty infiltration in the livers of 

some rats [117], and in one of seven monkeys [60], was noted after ip 

injection of 1,1-dimethylhydrazine.

1,2-Dimethylhydrazine, given ip, orally, or sc, was hepatotoxic in 

mice [125], miniature swine [126], dogs [126], and, to a lesser degree, in 

guinea pigs [126] and rats [125]. Dogs and miniature swine became 

jaundiced [126], possibly because of liver damage but more likely because 

their bile ducts were affected. The possibility of liver damage caused by 

phenylhydrazine has not been investigated to a sufficient extent to draw 

conclusions relevant to occupational exposure. However, several 

investigators have mentioned without supportive data that hepatic effects 

were seen in dogs [34,35] and rabbits [149] given phenylhydrazine.
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In summary, exposure to hydrazine and methylhydrazine caused liver 

damage in some species at low concentrations. The toxic effects differed, 

fatty infiltration being a primary effect, while cholestasis may have been 

a secondary manifestation of damage to other systems. Data on 1,2- 

dimethylhydrazine and phenylhydrazine are less conclusive because they are 

incomplete. However, the severe liver damage observed in some species 

after oral or sc administration of 1,2-dimethylhydrazine suggests that this 

compound probably would have some degree of hepatotoxicity in 

occupationally exposed humans. 1,1-Dimethylhydrazine appears to be 

hepatotoxic, but it is considerably less potent than hydrazine 

[60,116,117]. Contradictory experimental results in animals may have been 

caused by differing levels of nitrosodimethylamine, an impurity produced 

from decomposition or introduced in production [12,13]. Studies of workers 

exposed to 1,1-dimethylhydrazine [49,50] support the contention that liver 

damage is possible, although the reports, themselves, are inconclusive.

(e) Blood

In animals, inhalation of hydrazine [56], methylhydrazine 

[20,92,93,95], and 1,1-dimethylhydrazine [110] caused a dose-dependent 

hemolytic anemia. Dogs developed depressed erythrocyte counts, hematocrit 

values, and hemoglobin concentrations during the course of a 6-month 

inhalation exposure to hydrazine at 150 or 168 ppm-hours/week; the effect 

was reversible and was not observed at 30 ppm-hours/week [56].

Dogs exposed to methylhydrazine at 16.8 ppm-hours/week for 3 months 

or at 6-33.6 ppm-hours/week for 6 months developed anemia [93,95] and Heinz 

body formation [93]. At 150 ppm-hours/week [93], anemia was more severe, 

and methemoglobinemia and increased red cell fragility were observed.
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Monkeys had similar, although less severe, anemic effects. At 6.7 ppm- 

hours/week, statistically significant changes in blood cell counts were 

observed in rats after 45 days of exposure, but not at 90 days [95]. In 

short-term experiments at near-lethal exposures, anemia [20,92], 

reticulocytosis [20], and possibly methemoglobinemia [92] were observed in 

dogs; again, monkeys were less severely affected than dogs [92]. Dogs 

exposed at 1 ppm for 24 hours, the lowest concentration tested, were normal 

[95].

Dogs exposed at near-lethal concentrations of 1,1-dimethylhydrazine 

for 4 hours did not develop anemia [20]. The results of long-term studies 

differ. In one experiment, dogs exposed to 1,1-dimethylhydrazine at 150 

ppm-hours/week developed hemolytic anemia and hemosiderosis of the spleen

[110], but in another experiment with an exposure range of 1.5-150 ppm- 

hours/week, anemia was not observed [112]. Dogs exposed twice weekly for 

short intervals at about 100 ppm-hours/week for 6 weeks, then at 200 ppm- 

hours/week for 2 weeks did not develop anemia [111]. Although these 

reports appear contradictory, in the first experiment [110] it was possible 

to confirm that a mild anemia did exist because similar, but more severe, 

changes in erythrocyte counts, hemoglobin concentrations, and hematocrit 

values were also seen in dogs exposed at 750 ppm-hours/week. Thus, the 

total concentration time at which the dogs in the other two experiments 

[111,112] were exposed was probably insufficient to observe anemia. The 

lowest concentration of 1,1-dimethylhydrazine at which anemia was observed 

in dogs was, thus, about 5 ppm.

In dogs, methylhydrazine was a stronger hemolytic agent than 

hydrazine, and 1,1-dimethylhydrazine was the least potent in this regard.
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For hydrazine, the lowest level at which hemolytic effects were observed in 

dogs is equivalent to exposure at about 0.7 ppm for 40 hours/week; for 

methylhydrazine, it is about 0.15 ppm. In humans, exposure to 

methylhydrazine at 90 ppm for 10 minutes resulted in the formation of a few 

Heinz bodies in the red cells [44].

The hemolytic properties of phenylhydrazine have been known since the 

early 1900's [35], and phenylhydrazine hydrochloride had been used

therapeutically for polycythemia vera [51]. In animals, hemolytic anemia 

[145,148] and Heinz bodies [147] were found after administration of 

phenylhydrazine by various routes. In dogs, 95-100% of the red cells 

contained Heinz bodies 24 hours after sc injection of phenylhydrazine at 

20-30 mg/kg [147]. Similar results were obtained when methylhydrazine at a 

concentration of 46 mg/liter was incubated with human blood [45]. If it is 

assumed that, in the experiment with phenylhydrazine [147], 10% of the dose 

was retained in the blood (as was reported for rabbits [150]), and that the 

total dose available was roughly 200 mg/liter of blood, then 

phenylhydrazine and methylhydrazine at approximately equal concentrations 

caused the formation of an equivalent number of Heinz bodies. However, 

canine blood is more susceptible to methemoglobin formation than human 

blood [47], suggesting that Heinz body formation in the blood of these two 

species may not be directly comparable. In vitro studies of methemoglobin 

formation [46] found phenylhydrazine to have about one-half the effect of 

methylhydrazine. In the absence of any contradictory information, it seems 

reasonable to conclude that phenylhydrazine, by inhalation, would exert a 

toxic effect on the blood similar to that of methylhydrazine.
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Hemolytic anemia, as such, has not been studied with respect to 1,2- 

dimethylhydrazine exposure. In a study on tumorigenicity [127], it was 

mentioned that the animals were anemic. In vitro, methemoglobin was found 

in blood incubated with 1,2-dimethylhydrazine [46], Thus, it is probable 

that 1,2-dimethylhydrazine does have a toxic effect on red cells.

Because of the toxic effect on red cells resulting from exposure to 

the various hydrazines, secondary effects on the reticuloendothelial 

system, such as marrow hyperplasia and hemosiderosis, would be expected. 

Reticulocytosis [20], a decreased myeloid/erythroid ratio in the marrow 

[92,93], and hemosiderosis of the spleen [94,99] have been observed in 

animals after exposure to methylhydrazine. After injection of 

phenylhydrazine, enlargement of the spleen [147,148], congestion of the 

liver and kidneys [147], and transformation of yellow marrow to red marrow

[149] have been reported. Although the reports did not explicitly state 

such a conclusion, the effects described for phenylhydrazine can probably 

be attributed to hemosiderosis and stimulation of erythropoiesis. For 

hydrazine, a decreased myeloid/erythroid ratio has been observed [56], and 

for 1,1-dimethylhydrazine hemosideroses of the lymph nodes, marrow, Kupffer 

cells, and the spleen, along with increased erythrocytic activity in the 

marrow, have been noted [110],

(f) Kidneys

Exposure to methylhydrazine has caused kidney damage in animals 

[92,94,99,101], although some of the effects observed may be secondary to 

red cell destruction. After short-term exposures, effects on the renal 

tubules ranged from swelling to coagulative necrosis of the epithelium
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[92]. In long-term studies, hemosiderosis of the proximal tubules was 

observed at exposures as low as 6 ppm-hours/week for 6 months [94].

In dogs, ip injections of methylhydrazine at 7-30 mg/kg caused dose- 

related, time-related, partly reversible renal lesions [99]. The survival 

of some animals at the high doses was achieved only with the concomitant 

injection of pyridoxine. In one ip study, the kidneys of monkeys were 

unaffected when examined by a light microscope even at fatal doses [100], 

but in a later study in which the monkeys' kidneys were transplanted to a 

subcutaneous site, damage was observed in the proximal and distal tubular 

cells through an electron microscope; kidney function was not impaired 

[101].

Lipid deposition in the kidneys of monkeys injected ip with hydrazine 

was observed [60]; probably this effect was related to similar damage seen 

in the liver. In dogs given iv injections of hydrazine [61,62] and

methylhydrazine [62], glomerular filtration and proximal renal tubular 

function were affected. 1,1-Dimethylhydrazine, given ip to rats in near- 

fatal doses, caused diuresis, elevated BUN, and lipid infiltration in the 

renal tubules [117], but in monkeys, only one of seven had lipid deposits 

in the tubular membranes [60]. In another experiment in which 1,1- 

dimethylhydrazine was given ip, no kidney damage was observed 

microscopically, although amino acid excretion was enhanced [116]. No 

adverse effects on the kidney were observed after long-term inhalation 

exposure to 1,1-dimethylhydrazine in animals [110] or after iv injection 

[61,62].

After phenylhydrazine administration in dogs, the epithelial lining 

of the convoluted tubules was hypertrophied and filled with blood [147],
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This was probably a secondary effect of red cell destruction. No study on 

kidney damage from 1,2-dimethylhydrazine was found.

The kidney effects observed from methylhydrazine and phenylhydrazine 

appear to some extent to be secondary effects caused by hemolysis. Even

though these two compounds caused the most severe kidney damage observed

with any of the hydrazines, a standard that would protect against

hematologic effects should be adequate to prevent kidney damage, since 

hematologic effects were observed at concentrations lower than those 

causing kidney damage. Hydrazine appears to exert an effect on the kidneys 

similar to but less severe than that on the liver. 1,1-Dimethylhydrazine 

was the least nephrotoxic of the five hydrazines excluding 1,2- 

dime thy lhydrazine, for which no relevant information is available.

(g) Biochemical Function

Since the hydrazines are reactive molecules that can become widely 

distributed throughout the body, numerous disturbances of normal 

biochemical function might be expected. The literature contains many such 

references; however, they are often difficult to equate to an observed 

impairment in health. Most of these reports were, therefore, not discussed 

in the criteria document. However, there were several studies in which 

metabolic disturbances resulting from exposure to hydrazines could have 

serious consequences, as the result of an accidental massive exposure, a 

secondary illness, or an enzyme deficiency, and these reports were cited.

Hydrazine and, to a greater extent, methylhydrazine caused lactic 

acidosis and disturbances of glucose metabolism in dogs [46,63]. After 

hydrazine administration, hyperglycemia developed when liver glycogen

levels were high. When liver glycogen was depleted, hypoglycemia was
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induced [63]. Similar effects on blood glucose were also seen in rats 

given an ip injection of methylhydrazine [96,105]. Hypoinsulinemia was 

induced in rats injected ip with hydrazine sulfate even in the presence of 

excess glucose; the ability of the pancreas to secrete insulin appeared to 

be impaired [65].

1,1-Dimethylhydrazine was reported to have little effect on 

carbohydrate metabolism [46], but it induced hyperglycemia in rats [96]. 

In a study on monkeys, plasma glucose levels were also increased [60]. 

Recent studies of the effects of phenylhydrazine on biochemical function 

were not found. However, in a report [35] in 1924 on dogs given 

phenylhydrazine, reduced sugar tolerance was described.

(h) Metabolism

Various aspects of the metabolism of the hydrazines, including routes 

of excretion, tissue retention, and major metabolites, have been studied 

[66-68,103-105,120,121,144,150,122], but some uncertainty exists in 

determining the relevance of these studies to occupational exposure. The 

routes of administration were not typical of those encountered in the 

workplace, and studies in humans were not found. Regardless of the route 

of administration (iv, ip, or oral), 2-5 days were required for animals to 

excrete one-half the dose of hydrazine, methylhydrazine, or phenylhydrazine 

in the urine [66,68,103,150],

The results of several studies [66,68,104] show that dogs apparently 

excrete hydrazine and methylhydrazine in the urine about half as fast as do 

rodents. Although there was a considerable degree of variability in the 

results, 1,1-dimethylhydrazine was excreted more rapidly in the urine than 

were the other hydrazines. In dogs, cats, and rats given ip or iv doses of

146



1,1-dimethylhydrazine, 11-46% was excreted in 4-6 hours [121,122], Since 

the metabolism of inhaled hydrazines was not studied, it is not possible to 

determine if their retention in the lungs is likely. Respiration was shown 

to be a major route of elimination of methylhydrazine metabolites; in rats, 

as much as 37% of an ip dose was exhaled as carbon dioxide or methane in 27 

hours [103]. In rats given 1,2-dimethylhydrazine, 11% of the dose was 

respired as carbon dioxide and 14% as azomethane in 24 hours [144]. Twelve 

to 23% of the injected 1,1-dimethylhydrazine was excreted as carbon dioxide 

by rats in 7 hours [121]. Similar data were not available for hydrazine or 

phenylhydrazine.

In dogs, hydrazine was excreted unchanged in the urine [66], but, in 

rabbits, some of the hydrazine was metabolized to diacetylhydrazine, an 

apparent product of detoxification [67]. Metabolites of 1,1- 

dimethylhydrazine identified in the urine were the parent compound 

(possibly conjugated), glucose dimethylhydrazone, and a neutral hydrazone 

or hydrazide [120]. For phenylhydrazine, the major metabolic processes 

were the hydroxylation of the ring and probable conjugation to form 

hydroxyphenylhydrazone glucuronide and formation of pyruvic acid and 

oxoglutaric acid phenylhydrazones [150], Thus, the results from 

phenylhydrazine suggest that the ability of the hydrazines to react with 

aldehydes and ketones may be an important mechanism of detoxification. The 

metabolic products of 1,2-dimethylhydrazine have been suggested to be 

responsible for the development of colon cancer [131]. Metabolites of 

other hydrazines need to be studied to determine their possible toxic 

action or their role as detoxification products.
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Hydrazine [68], methylhydrazine {104], and 1,1-dimethylhydrazine

[150] were not preferentially concentrated to a greater extent in any one 

organ. In rabbits, however, 10% of the administered dose of 

phenylhydrazine was retained in erythrocytes [150]. In rats given 

hydrazine sc, the highest concentration of hydrazine was found in the 

kidneys after 2 hours [68]. In animals given methylhydrazine ip, the 

highest concentrations of the compound were in the serum and liver, 

followed by the kidneys and bladder [104]. The highest concentrations of

1,1-dimethylhydrazine in animals were found in the colon [122], liver, and 

blood [120,122].

Carcinogenicity, Mutagenicity, Teratogenicity, and Effects on Reproduction 

No studies have been found in which cancer of humans can be related 

to exposure to hydrazines. Tumors, often malignant, have been found in at 

least one animal species after the administration of each of the five 

hydrazines. These results are summarized in Table III-7.

(a) Carcinogenicity of Hydrazine

Hydrazine and its sulfate salt have been reported to be tumorigenic 

in mice after administration by several routes [69-75,77-84]. When 

hydrazine sulfate was given to BALB/c mice by intubation, an increased 

incidence of lung tumors, mostly adenomas but also carcinomas, was found 

[70-72]. Tumor incidence was dose dependent [70], and the mice appeared to 

be more susceptible if administration began shortly after birth [74]. 

There was some suggestive evidence of a hormonal effect [73]. A few mice 

in one study had hepatocarcinomas [70]. In CBA mice, both lung tumors 

(adenomas and adenocarcinomas) and hepatomas were found [71,75]; the
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hepatoma incidence was dose related [75], but no similar study concerning 

lung tumors was found. Again, a hormonal effect on tumor induction was 

suggested [77]. Swiss mice developed lung tumors when given hydrazine 

orally [78] and CDF1 mice given hydrazine sulfate had carcinomas of the 

lung [81] even though in both cases the animals were killed after 

relatively short periods of time. Swiss mice given a 0.001% hydrazine 

solution in drinking water throughout life developed adenomas in the lungs 

[80]. Malignant lymphomas were also found. Similar results were found in 

Swiss mice given 0.012% solutions of hydrazine sulfate; however, an 

increased tumor incidence was not found in AKR or C3H strains [79].

The CDF1 [81], SWR [82], C57BL/B [82], and BALB/c (newborn) [84] 

strains of mice all developed lung tumors when given ip injections of 

hydrazine sulfate. However, tumors in the mediastinum, not the lungs, were 

found in mice injected ip with hydrazine [83].

A dose-related increase in alveologenic carcinomas in mice exposed to 

hydrazine by inhalation at 30-33.6 or 150-168 ppm-hours/week for 6 months 

was found at necropsy 1 year after the end of exposure [69].

Regardless of the route of administration, in drinking water, by 

gavage, ip, or by inhalation, hydrazine and its sulfate salt were 

tumorigenic in mice and the main target organ was the lungs. There was no 

indication of a true difference in tumorigenic potential between hydrazine 

and its sulfate salt, although differences in strain susceptibility were 

apparent. In some studies there were tumors classified as adenomas 

becoming malignant. This description appears to apply to tumors in which 

there was a peripheral infiltration tendency compared with adenomas which 

had clearly defined margins and with carcinomas that were invasive.
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Lung tumors, both benign and malignant, were also induced in rats 

given hydrazine sulfate orally [76]. However, negative results were 

obtained in hamsters [75,85], even though the studies were identical in 

design to others in which mice developed tumors. These results may 

represent a true difference in susceptibility, or they may suggest that the 

metabolism of hydrazine is species specific. The results in mice and rats 

suggest that hydrazine may have a tumorigenic potential in humans.

(b) Carcinogenicity of Methylhydrazine

About 23% of the Swiss mice given 0.7 mg of methylhydrazine in 

drinking water daily for life developed lung tumors [80] . In the same 

study [80], male mice given 0.102 mg and females given 0.078 mg of 

methylhydrazine sulfate in drinking water daily for life had a lung tumor 

incidence of 46%. From the normal incidence of lung tumors observed in 

this colony, it cannot be determined with certainty that the incidence of 

lung tumors after methylhydrazine administration was significantly 

increased. However, the latent period of about 45 weeks was short compared 

with the 81 weeks observed for methylhydrazine sulfate. The higher

incidence of lung tumors observed for a lower dose of the sulfate salt may 

have been caused by the toxicity of methylhydrazine at the higher dose, or 

methylhydrazine may have decomposed in the drinking water.

In two other studies, one in which mice were given methylhydrazine by 

intubation and ip injection [81] and one in which the sulfate salt was 

given orally [78], no evidence of carcinogenicity was found. In the 

methylhydrazine sulfate study [78] , all animals were killed about 30-40 

weeks before the average latent period observed in another study [80] in 

which lung tumors were found. In the methylhydrazine study [81], the
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animals were killed still earlier and the small number of females examined 

suggests that the dose may have been acutely toxic.

Hamsters given 1.1-1.3 mg of methylhydrazine each day in drinking 

water had an increased incidence of malignant histocytomas [106]. In a 

similar study, two other groups of hamsters given methylhydrazine did not 

develop histocytomas [107]. When the solution was unbuffered, 12% of the 

hamsters developed liver tumors. However, the significance of these tumors 

is questionable, since there were two different cell types and the number 

of animals used, especially controls, was small. When the solution was 

buffered, neither histocytomas nor liver tumors were found.

There are two apparent differences in these studies. In one study 

[107], 60% of the unbuffered methylhydrazine was found to degrade in 24 

hours. Thus, the results of both studies [106,107] may have been affected 

by degradation products. That decomposition products, themselves, may 

possibly be carcinogenic is a problem that needs to be investigated. 

However, the more stable salt form resulted in a higher tumor incidence in 

mice than the free base [80]; therefore, methylhydrazine itself must be 

considered the causative agent. The hamsters in one study [106] were 6 

weeks old at the start of the experiment; in the other [107], they were 5 

months old. This difference may have influenced the results.

(c) Carcinogenicity of 1,1-Dimethylhydrazine

In Swiss mice given 0.7 mg of 1,1-dimethylhydrazine daily in drinking 

water for life, 79% developed angiosarcomas; normal incidence in this 

colony was about 2% [123]. Many lung tumors, primarily adenomas, were also 

found. In males, 18% had kidney tumors and 12% had hepatomas; similar 

tumors were not seen in controls, suggesting that while the incidences
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were relatively low, the tumors may have been related to exposure. In 

another study [78], Swiss mice given 0.5 mg/day of 1,1-dimethylhydrazine 

for 40-60 weeks showed inconclusive evidence of lung tumor induction. In a 

third study [81], at much lower doses, there was no evidence of a 

carcinogenic effect in mice. Because only a 32-week observation was used 

in this study, the results cannot be considered conclusive.

One additional factor that must be considered in evaluating the 

tumorigenicity of 1,1-dimethylhydrazine is the role of nitrosodimethylamine 

contamination. One study [113] has described this trace contaminant as the 

cause of liver toxicity. It may be that this contaminant was related 

either directly or indirectly to the induction of some of the tumors.

(d) Carcinogenicity of 1,2-Dimethylhydrazine

Angiosarcomas were found after 1,2-dimethylhydrazine was administered 

in drinking water to mice [127], hamsters [85], and rats [131]. One study

[127] reported adenomas of the lungs in mice, but another [131] reported 

that the lung tumors in rats were metastatic. In hamsters, lung tumors 

were not reported, but many animals had tumors of the cecum or liver [85]. 

When given to rats by intubation, 1,2-dimethylhydrazine produced carcinomas 

of the colon [130,131], gastrointestinal tract [130], and rectum [131]. 

Guinea pigs developed bile duct carcinomas and hepatomas [126]. 1,2- 

Dimethylhydrazine, administered ip and by gavage, was reported to be 

noncarcinogenic in mice [81]. However, the animals were examined for lung 

tumors, not for colonic tumors, and the observation period was short.

After repeated sc injections with 1,2-dimethylhydrazine, Swiss mice

[128] and CF1 mice [132] developed tumors of the large intestine. In one 

study [128], tumors of the lungs, blood vessels, and kidneys were also
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reported. All rats given multiple sc injections of 1,2-dimethylhydrazine 

died with malignant tumors of the large intestine [131]. The sc route has 

also been used by numerous investigators interested primarily in the study 

of colon cancer. Colon tumors have been induced in CF1 [133], NMRI [134], 

and Swiss mice [136], but not in C57/B mice [136]. Strain specificity for 

tumor induction in rats has also been noted [139]. Other factors that 

influenced colon tumor production in rats included cholestyramine [142], 

disulfiram [143], and the amount of fat in the diet [138,141]. Germ-free 

rats were less susceptible than conventional rats [140].

Several points indicate that, at least by the sc route and by 

intubation, 1,2-dimethylhydrazine is metabolized to an active carcinogen: 

first, the site of tumor formation itself; second, the decreased 

susceptibility of germ-free animals; and third, the exhalation of 

azomethane in rats after sc injection [144].

Two factors may account for the high incidence of tumors at sites 

other than the colon. There may be different metabolic pathways available 

when a low dose is given slowly but continuously. It is also possible that 

some of the compound decomposed in solution on standing. No long-term 

inhalation studies on 1,2-dimethylhydrazine are available. The results 

from sc injection may be similar to what would be expected from dermal 

application. However, it is unclear to what extent administration in the 

drinking water would be relevant to inhalation. It is possible that not 

all sites of tumor formation have been identified. However, since at least 

four species, the mouse, rat, hamster, and guinea pig, have all developed 

malignant tumors after being given 1,2-dimethylhydrazine, this compound is 

likely to be carcinogenic to humans.
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(e) Carcinogenicity of Phenylhydrazine

When phenylhydrazine hydrochloride was administered by intubation to 

BALB/c mice, 53% developed lung tumors, some of which were malignant [151]. 

The incidence in control animals was 13%. In another study [152] in which 

phenylhydrazine was administered in the drinking water of Swiss mice for 

life, the only significant increase found was in blood vessel tumors. The 

differences found in these two studies could have been either the result of 

strain specificity or metabolic alteration arising from the difference in 

the route of administration. In two additonal studies [78,81], no evidence 

of carcinogenicity was found. As described before, these two studies have 

serious inadequacies in their experimental designs, and consequently little 

significance is placed on them.

(f) Other Effects

Hydrazine was mutagenic in the host-mediated assay system [87] and 

weakly mutagenic in two mutant strains of Salmonella typhimurium [88]. 

Methylhydrazine was mutagenic in tests with Salmonella typhimurium TA-1535.

1,1-Dimethylhydrazine appeared to be metabolically activated to a mutagenic 

intermediate in liver microsomes, and it was active in a microbial test 

(TA-90) but not in the dominant-lethal assay [108]. This evidence of 

mutagenicity could be interpreted as being consistent with a suggestion 

that the tumors found in animals affected by these compounds were caused by 

somatic mutations. Whether germinal mutations should be expected from 

these compounds is not evident from the limited data.

Hydrazine administration to female rats on the 11th day of pregnancy 

resulted in fetal resorption and pup deaths; pyridoxine hydrochloride 

afforded some protection [89]. Solutions containing hydrazine sulfate were
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teratogenic to South African clawed toad embryos cultured in this medium 

[90,91]. Methylhydrazine sulfate, administered to rats on the 12th day of 

pregnancy, was not teratogenic in doses that were apparently fatal in half 

of the dams [108]. However, methylhydrazine was found to be a potent 

teratogen to South African clawed toad embryos, 52% of the embryos becoming 

malformed in a culture medium containing 5 mg/liter of methylhydrazine 

[91]. 1,1-Dimethylhydrazine and 1,2-dimethylhydrazine at concentrations of

10 and 50 mg/ml, respectively, also caused more than half of the exposed 

toad embryos to be malformed [91]. Rats born to dams injected with 

phenylhydrazine hydrochloride on the 17-19th days of pregnancy were 

jaundiced and anemic at birth and they were slower in conditioned avoidance 

learning [153], but this is more likely the result of a fetal toxicity than 

a development deficiency.

There is insufficient information from these teratogenicity studies 

on which to base conclusions for recommendations for a standard for the 

hydrazines. Embryos of toads, a species without placenta, bathed in 

solutions of hydrazines provide poor data on which to base implications 

about teratogenicity or other effects on reproduction.

Summary Tables of Exposure and Effect

Tables III-l through III-7 summarize the effects of the hydrazines on 

animals. The LC50’s for rodents [20] suggest that methylhydrazine is the 

most acutely toxic compound, followed in order by 1,1-dimethylhydrazine,

1,2-dimethylhydrazine, and hydrazine. The dog has consistently been a more 

susceptible species than the rat [20,92,111]. Because of the lack of data,
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acute toxicity of phenylhydrazine can only be iiifetteid from other 

hydrazines. The oral LD50 for rats was 188 mg/kg [16] compared with 71 

mg/kg for methylhydrazine [97]. This finding would Suggest* when the 

formula weights of the two compounds are taken into consideration, that the 

acute toxicity of phenylhydrazine may be about the same as that of 

methylhydrazine.
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TABLE III-l

LC50 OR LD50 DATA FOR HYDRAZINES

Rotlte of 
Exposure Species

No. of 
Doses T>r 

LC50 or Duration
LD50 of Dosage 'References

HYDRAZINE

inhala
tion

ip
iv

dermal

Rats

Mice

Rats

Rabbits

Guinea
pigs

METHYLHYP RAZINE

inhala
tion

Dogs

Rats

570 ppm U hr

252 ppm M

64 mg/kg Once

26 mg/kg ”

93 mg/kg ,r

190 mg/kg "

Squirrel
monkeys

Rhesus
monkeys

340 ppm 

145 ppm

82 ppm 

162 ppm

390 ppm 

195 ppm 

96 ppm 

427 ppm 

244 ppm

15 min

30 min 

1 hr

15 min 

30 min 

1 hr 

30 min 

1 hr

20

20

96

58

58

58

92

92

92

92

92

92

92

92

92



TABLE III-l (CONTINUED)

LC50 OR LÖ50 DATA FOR HYDRAZINES

Route of 
Exposure Species

LC50 or 
LD50

No. of 
Doses or 
Duration 
of Dosage References

inhala
tion

oral

dermal

ip

127 ppm 2 hr

74-78 ppm 4 hr

Hamsters

Rats

Hamsters

Rats

Rabbits

Guinea
pigs

Hamsters

Rats

Hamsters

Rats

Rabbits

30 mln

1 hr

2 hr 

4 hr

4 hr 

Once

272 ppm 

122 ppm

92 ppm 

56-65 ppm

143 ppm 

71 mg/kg

22 mg/kg "

183 mg/kg "

93 mg/kg " 

47 mg/kg

239 rag/kg Once

20 mg/kg ”

28 mg/kg "

21 mg/kg "

17 mg/kg ”

12 mg/kg

92

2 0,
92

92

92

92

20,
92

20

97

97

97

58

58

97

97

96

97 

97 

58
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TABLE III-l (CONTINUED)

LC50 OR LD50 DATA FOR HYDRAZINES

No. of 
Do9es or

Route of LC50 or Duration
Exposure Species LD50 of Dosage References

I,1-DIMETHYLHYDRAZINE

inhala Rats 24,500 ppm 5 min 111
tion

" 8,230 ppm 15 rain 111

» 4 ,010 ppm 30 tain 111

" 1,410 ppm 60 min 111

252 ppm 4 hr 20

Mice 172 ppm " 20

Dogs 22,300 ppm 5 min 111

" 3,580 ppm 15 min 111

" 981 ppm 60 min 111

Hamsters 392 ppm 4 hr 20

ip Rats 102 mg/kg Once 96

iv Rabbits 70 mg/kg " 58

dermal " 1,049 mg/kg " 58

" Guinea 1,314 mg/kg •* 58

oral

pigs

Rats 360 mg/kg „ 114



LC50 OR LD50 DATA FOR HYDRAZINES

TABLE IX1—1 (CONTINUED)

Route of
Exposure Species

LC50 or 
LD50

No. of 
Doses or 
Duration 
of Dosage References

1,2-DIMETHYLHYDRAZINE

inhala- Rats 280-400 ppm 4 hr 20
tion

ip 275 mg/kg* Once 125

" Mice ■462 mg/kg** " 125

46 mg/kg* » 125

" Dogs 53 mg/kg* " 125

PHENYLHYDRAZINE

oral Rats 188 mg/kg Once 16

" Mice 175 mg/kg " 16

" Rabbits 80 mg/kg » 16

M Cuinea 80 mg/kg " 16
pigs

* Death In 7 d, free base dose 
** Death in 1 d, free base dose



TABLE III-2

EFFECTS (OTHER THAN NEOPLASTIC) OF EXPOSURE TO HYDRAZINE ON ANIMALS

No. of 
Doses or

Route of Duration Ref-
Exposure Species Exposure of Dosage Observed Effects erences

inhala
tion

Rats

dermal

ip

Mice

Dogs

Monkeys

Dogs

Rhesus
monkeys

20-225 ppm 
5-14 ppm

30-168
ppm-hr/wk

150-168
ppm-hr/wk

30-33.6
ppm-hr/wk

14 ppm

5 ppm

30-168
ppm-hr/wk

6 wk* 
6 mo*

6 mo

6 mo*

96-480 mg/kg Once

5-20 mg/kg 25-33 x

32 mg/kg 2 x

Death of 83% in 1-6 wk 55 
Some deaths

Weight loss 56

Moderate to severe 56 
fatty liver

Weight loss, fatty 
liver, anemia

56

Some increased resis- 56 
tance to osmotic hemo
lysis

Fatty liver, anemia, 55 
death in 2 of 4

Weight loss, vomiting, 55 
irregular breathing

Slightly fatty liver 56

Hypoglycemia, some 59
deaths

Weight loss , slight 60
anemia, fatty liver, 
kidney, and heart

Inhibit insulin 65
release

159



TABLE III-2 (CONTINUED)

EFFECTS (OTHER THAN NEOPLASTIC) OF EXPOSURE TO HYDRAZINE ON ANIMALS

Route of 
Exposure Species

No. of 
Doses or 
Duration 

Exposure of Dosage Observed Effects
Ref

erences

iv Dogs 25-100 mg/kg Once Hypoglycemia, convul
sions

- 63

I t I t 16-20 mg/kg " Impaired kidney 
function

61,
62

*6 hr/d, 5 d/wk
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TABLE III-3

EFFECTS (OTHER THAN NEOPLASTIC) OF EXPOSURE TO METHYLHYDRAZINE ON ANIMALS

No. of 
Doses or

Route of Duration Ref-
Exposure Species Exposure of Dosage Observed Effects erences

inhala-
tion

Monkeys

Dogs

Rat s

Mice

6-150
ppm-hr/wk

6.7-33.6 
ppm-hr/wk

1 ppm

21-29 ppm

15 ppm

60-150
ppm-hr/wk

6-33.6
ppm-hr/wk

33-6
ppm-hr/wk

6.7
ppm-hr/wk

1 ppm

6-150
ppm-hr/wk

6.7-33-6
ppm-hr/wk

6 0 - 1 5 0
ppm-hr/wk

6 mo

3 mo

24 hr

4 hr

6 mo

3 mo

24 hr 

6 mo

3 mo 

6 mo

Anemia

None

Convulsions, many 
deaths, anemia

Vomiting, tremors, 
incoordination, anemia

Anemia, cholestasis, 
hemosiderosis

Anemia, cholestasis

Slight anemia, liver 
congestion

None

Weight gain lag 
above 60 ppm-hr/wk

Anemia

Cholestasis, bile 
duct proliferation, 
hemosiderosis, some 
deaths

93

95

95

20

20

93
94

93
94

95

95

95

93

95

93
94
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TABLE III-3 (CONTINUED)

EFFECTS (OTHER THAN NEOPLASTIC) OF EXPOSURE TO METHYLHYDRAZINE ON ANIMALS

Route of 
Exposure Species Exposure

No. of 
Doses or 
Duration 
of Dosage Observed Effects

Ref
erences

inhala
tion

Mice 6-33.6 
ppm-hr/wk

6 mo Hemosiderosis 93
94

ip Monkeys 7 and 10 
mg/kg/d

2-4 doses Death 100

II it 2.5-5
mg/kg/d

23 doses Initial weight loss 100

VI ii 2.5-7.5 
mg/kg/d

1-14 doses Renal tubule damage 101

II Dogs 10 mg/kg Once Death, organ 
conges tion

99

ff n 7.5 mg/kg n Mild kidney damage 99
n ii 5 mg/kg ii Vomiting, convulsions 99

iv ii 29 mg/kg tt Methemoglobinemia, 
methemoglobinuria, 
impaired kidney 
function

62

If ti 25 mg/kd - Methemoglobinemia 46

dermal ii 15-265
mg/kg

it Methemoglobinemia, 
convuls ions

98
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TABLE III-4

EFFECTS (OTHER THAN NEOPLASTIC) OF EXPOSURE TO
1,1-DIMETHYLHYDRAZINE ON ANIMALS

No. of 
Doses or

Route of Duration Ref-
Exposure Species Exposure of Dosage Observed Effects erences

inhala- Dogs 111 ppm 4 hr Convulsions, death 20
tion

tt 24-52 ppm 11 Convulsions 20
II 25 ppm 13 wk* Anemia, hemosider

osis, death in 1 of 3
110

11 5 ppm 26 wk* Mild anemia, hemo
siderosis in spleen

110

tt 0.5-5 ppm 6 mo* Increased SGPT 112

Rats 140 ppm 6 wk* Convulsions 110
11 18.4% 35 min Death of all 114
tl 75 ppm 7 wk* Occasional tremors, 

breathing difficul
ties, lethargy

110

Mice 140 ppm 6 wk* Convulsions, death 110
It 75 ppm 7 wk* Death of 40% 110
tl 100-120 

mg/kg
Once Convulsions, death 116

tt 40-80
mg/kg

ft Altered amino acid 
excretion, mild con
vulsions at 80 mg/kg

116

Rats 50-70 
mg/kg

3 wk 
21 x

Kidney damage, many 
deaths

117

tt 10-30 
mg/kg

3 wk 
18 x

1 t o

Increased SG0T 117
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TABLE III-4 (CONTINUED)

EFFECTS (OTHER THAN NEOPLASTIC) OF EXPOSURE TO
1,1-DIMETHYLHYDRAZINE ON ANIMALS

Route of 
Exposure Species Exposure

No. of 
Doses or 
Duration 
of Dosage Observed Effects

Ref
erences

iv Dogs 38-45
mg/kg

Once Kidney function 
unchanged

61,
62

dermal I t 300-1,800
mg/kg

t t Hyperglycemia, 
death of all at 
highest dose

115

*6 hr/d, 5 d/wk
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TABLE 111*5

EFFECTS (OTHER THAN NEOPLASTIC) OF EXPOSURE TO 
1,2-DIMETHYLinfDRAZINE ON ANIMALS

Route of 
Exposure Species Exposure*

No. of 
Doses or 
Duration 
of Dosage

Ref-
Observed Effects erences

oral Rats 13.5 mg/kg 4-8 x (Colonic tumors) 126

sc and oral Dogs 2.3-27 
mg/kg

2-10 x Liver damage, death 
at 14 mg/kg or higher

126

Pigs 13.5-27
rog/kg

8-10 x Liver damage, many 
deaths

126

Guinea
pigs

Xor Weight loss, liver 
damage, bile duct 
hyperplasia (and 
carcinomas)

126

ip Rats 223 mg/kg Once Liver damage** 125
•i Mice 24-35

mg/kg "
125

*Doses reported as free base doses 
**Animals killed before 168 hr

TABLE III-6

EFFECTS (OTHER THAN NEOPLASTIC) OF EXPOSURE TO PHENYLHYDRAZINE ON AN DIALS

Route of 
Exposure Species Exposure*

No. of 
Doses or 
Duration 
of Dosage Observed Effects '

Ref
erences

sc Mice 0.18-0.20
g/k-g

Once Cyanosis, convul
sions, death

146

M 0.17 g/kg " Death of 452 146

" Dogs 20-40
mg/kg

2 x Anemia, organ con
gestion

147

iv Rabbits 1.9 mg Several in 
45 d

Increased reticu
locytes, hyperemia 
in bone marrow

149

ip Rats 75 mg/kg Once Anemia, splenomegaly 148

oral Dogs 14 mg/kg 4 x Anemia 145

*Doaes reported as free base doses
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TABLE III-7

TUMORIGENIC EFFECTS OF HYDRAZINES OS’ ANIMALS

Compound

Hydrazine

Hydrazine sulfate

Number of 
Doses or

Route of Dally Duration Animals with 
Species Exposure Dose of Dosage Tumors

(mg) C)

LG BV I LV*

oral 0.06 Life 51 3 I 1

0.25 40 wk 46
0 10

inhala- 5 ppm 6 tno 83
tion
" 1 ppm " 33

0 13

Rats "

Hamsters "

Mice oral
(CBA)

Mice ”

Mice oral
(BALB)

15 68 wk0
2.3 Life

1.13 150 x

0.56
0.28
0.14

0.7 Life0
1.13 150 x

0.56
0.28
0.140

25 - - 15
0 -  -  0

-  -  8

- - - 61

- - - 57
- - - 18

2

49 3 1
11 3

90

70 8
76 4
43 
14

Mice oral
(Newborn)

Mice "
(CBA)

Mice oral
(BALB)

Mice oral

ip

16.7** 60 d

1.13 36 wk

0
32** 4 wk

0
41.6** 8 wk0
20.8** 8 wk

100

83 - - 66

6 4
87 2

24

4610
20

Ref
erences

80

78

69

76

85

75

79

70

74

71

81

81
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Compound

Methylhydrazine

Methylhydrazine 
sulf ate

l,1-Dimethylhydrazine

1,2-Dimethylhydrazine 
dihydrochloride

TABLE III-7 (CONTINl'F.D)

TUMORIGENIC EFFECTS OF HYDRAZINES ON ANIMALS

Number of 
Doses or
Duration Animals with Ref-
of Dosage Turaors erences

( S )

LG BV LV*

Mice oral 0.69 Life 23 9 - 7 80

» - 3.7** 8 wk 0 _ _ _ 81
- 0 - 10 - - -

amsters oral 1.2 Life _ 6 20 44 106
- 0 - - - 1 I

- " 52,5*** Life _ _ 12 107
- 0 - - - - 0

Mice ip 1.8** 8 wk 10 - - - 81

" oral 0.5 40 wk 5 - - - 78

- 0 - 10 - - -

oral 0.09 Life 46 5 - 1 80

Mice " 0.7 » 71 79 - 7 123

•• 7.2** 8 wk 4 _ _ _ 81
- 0 - 10 - - -

oral 0.5 40 wk 29 _ _ 78
- 0 - 10 - - -

ip 3.6** 8 wk 3 - - - 81

amsters oral 0.16 Life - 85 23 17 85

Rats sc 4 7*** 36 wk 100 131
" 16*** ” - - 100 -

" oral 47*** 11 wk - - 93 - 131

Mice sc 20*** 10 x 43 48 86 1 128
" " 20*** 1 X 29 22 2 6

- 0 - 22 6 - -
» sc 20*** 24 wk _ _ 90 132

" 20*** 6 wk - - 37.5 -

oral 0.07 Life 34 95 2 127

Route of Daily 
Species Exposure Dose Cmg)
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TABLE III-7 (CONTINUED) 

TUMORIGENIC EFFECTS OF HYDRAZINES ON ANIMALS

Compound Species
Route of 
Exposure

Daily
D09e
(mg)

Number of 
Doses or 
Duration 
of Dosage

Animals with 
Tumors
U)

LG BV I LV*

Ref
erences

1,2-Dimethylhydrazine Mice oral 10.6** 8 vk 33 _ 81
dihydrochloride

- 0 - 10 - -

" " ip 5.3** 8 vk 10 - - - 81

Phenylhydrazine *• oral 0.25-0.5 40 vk _ _ 78
" - 0 - 10 - -

Phenylhydrazine " oral 200** 42 vk 53 - _ 151
hydrochloride

" - 0 - 13 - -

Phenylhydrazine Mice oral 23.2** 8 vk 14 _ _ 81
hydrochloride - 0 - 10 - -

" " oral 0.72 Life 13 21 1 3 152
" " - 0 " 22 6 5

" " ip 11.6** 8 vk 13 - - - 81

*LG»lungs, BV*blood vessels, I“intestines, LV«liver
**Total dose
***mg/kg/wk
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IV. ENVIRONMENTAL DATA AND ENGINEERING CONTROLS

Hydrazines are generally handled and used in enclosed systems; thus, 

the concentrations of hydrazines present in workroom air should be very 

low. Higher concentrations may be expected during the transfer of the 

hydrazines from one container to another, when the containers are open, or 

during an accidental spill, since vapors or aerosols of these hydrazines 

may escape into the air. However, insufficient information has been found 

on the concentrations of hydrazines in workroom air to reach any 

conclusions on typical worker exposures. Many analytical methods have been 

developed, but most were not designed for air monitoring. Some methods 

were developed for this purpose, but few reports were found concerning 

their application to actual monitoring. The available methods will be 

reviewed, and appropriate sampling and analytical methods will be 

recommended. Engineering control techniques will also be discussed.

Air Sampling

Air sampling techniques used for collecting gases or vapors can be 

used to collect hydrazine bases in air. These techniques include 

absorption in a liquid medium and adsorption on a solid sorbent. 

Generally, the latter is favored because a solid is easier to handle than a 

liquid. However, other factors, such as collection efficiency, stability, 

and subsequent analysis, should also be considered in the selection of a 

sampling method. A reactive medium should be used so that only a 10- to 

20-ml volume of a liquid medium or a few hundred milligrams of a solid
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sorbent can collect the hydrazines at concentrations several times the 

recommended exposure limits. The collection efficiency for either medium 

should also be independent of the concentrations of the hydrazines. For 

solid sorbents, a solvent capable of desorbing the collected hydrazines 

with a constant efficiency should be available.

Because of their alkalinity, the hydrazine bases have been collected 

in midget bubblers containing an acid medium such as dilute sulfuric or 

hydrochloric acid [154,155]. At a flowrate of 1 liter/minute, the 

collection efficiency was nearly 100% in 10-15 ml of hydrochloric acid for 

known concentrations of up to 3.44, 0.78, 2.22, and 44.8 mg/cu m of

hydrazine, methylhydrazine, 1,1-dimethylhydrazine, and phenylhydrazine, 

respectively [155]. In these studies, the collected samples were also 

found to be stable for at least 5 days. No report has been found on the 

collection efficiency of hydrazines in sulfuric acid. Pinkerton et al 

[156] used 20 ml of a buffered solution containing citric acid and disodium 

acid phosphate to collect 1,1-dimethylhydrazine at 1 liter/minute and found 

a collection efficiency of 91.6% for amounts up to 0.24 mg.

Hydrazines have been collected on a sulfuric acid-coated silica gel 

sorbent for subsequent gas-chromatographic analysis [157-160]. At a 

flowrate of 1 liter/minute, 400 mg of sulfuric acid-coated silica gel 

equally divided in two sections in a glass tube was found to collect 32 mg 

of 1,1-dimethylhydrazine, which was considered to be less reactive than 

hydrazine, methylhydrazine, or phenylhydrazine [157]. Sorption efficiency 

was independent of vapor concentration and humidity.

Only a few reports were found on the application of the above- 

mentioned methods in actual air sampling; therefore, the results of
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laboratory studies are used as the basis for a recommended method for 

sampling. Since the concentrations of hydrazines to be expected in 

workroom air are much lower than the concentrations tested for hydrochloric 

acid or silica gel media, either one can be used to collect airborne 

hydrazines. Other collection media are not recommended because of their 

lower efficiency or the lack of information on their performance. At a 

flowrate of 0.2-1.0 liter/minute with 200 mg of sulfuric acid-coated silica 

gel packed in a 6-mm internal diameter, 8-cm long glass tube, virtually 

100% of the hydrazines that pass through the sorbent will be collected. At 

0.2 liter/minute, the pressure drop across sampling tubes is 6 mmHg; at 1 

liter/minute, it is 33 mmHg [159]. Thus, at 0.2 liter/minute, sampling can 

be continued for a full workshift, but at 1 liter/minute, sampling should 

last no more than 2 hours. Sorbent tubes are convenient to use, but the 

sorbent and the tube used for sampling may need to be prepared by the 

person responsible for measurement pending commercial availability. 

Details of the recommended method of sampling and preparation of silica gel 

tubes are given in Appendix I [161]. Salts of hydrazines would be present 

in air as aerosols. A particulate collecting filter, such as a glass-fiber 

filter, should be used for their collection. How efficient the sampling 

method in Appendix I is when both vapor and particulate forms of the 

hydrazines are present is not known. A modification involving a filter and 

a silica gel adsorber should be efficient for the collection of both, but 

the ability of the pump to cope with the greater resistance to flow needs 

checking. Also, combining of two samples for analysis or the separate 

analyses of two samples probably involves more error than collection of a 

single sample for analysis.
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Chemical Analysis

In considering an analytical method, the sensitivity of the method is 

an important factor. Since there are instances when hydrazine, 

methylhydrazine, and 1,1-dimethylhydrazine are used simultaneously, the 

analytical method also should be either specific for individual hydrazines 

or capable of measuring all with equal sensitivity. Titration with acids 

and oxidants and reaction with color-forming reagents have been used to 

analyze hydrazines. Generally, these methods do not distinguish different 

hydrazines, although some methods are very sensitive. More specific 

techniques, such as gas-chromatographic or other separation methods, have 

to be used to analyze mixtures of hydrazines. Many analytical methods have 

been developed and tested under controlled conditions, but only a few 

reports are available on the actual analysis of workroom air samples for 

the hydrazines. Again, laboratory studies provide the basis for 

recommendations.

Kolthoff [162], in a 1924 report, found that the rate of reaction of 

iodine with hydrazine sulfate in a buffered solution decreased with 

increasing hydrogen ion concentration, which made the titration end point 

difficult to determine. When sodium bicarbonate was used as a buffer, 100% 

accuracy was reported for a sample containing 162.5 mg of hydrazine 

sulfate. Titration of hydrazine sulfate with iodate, bromate, or 

permanganate was also examined by Kolthoff, who found that accurate results 

were obtained when 81-163 mg of hydrazine sulfate were tested using a 

sufficient amount of hydrochloric acid. The permanganate titration had to 

be carried out with a boiling sample solution.
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Feinsilver et al [154], in 1959, reported on the iodate and bromate 

methods to determine the concentration of salts of hydrazine, 

methylhydrazine, 1,1-dimethylhydrazine, or 1,2-dimethylhydrazine in aqueous 

solution. The acidified solution of hydrazines was titrated with potassium 

iodate to a visual end point or with potassium bromate to a potentiometric 

end point. The iodate method was tested to analyze samples containing 14

mg or more of each of the four hydrazines, and recoveries of at least 96%

were found. Potassium iodate titration has been used to determine exposure 

chamber concentrations of 0.1-5 ppm for methylhydrazine [93,95] and 5-140 

ppm for 1,1-dimethylhydrazine [110]. The potassium bromate method was 

tested to detect 3 mg of each of the four compounds, and recoveries were at 

least 92.5% for all except 1,1-dimethylhydrazine, for which the results 

were not reproducible. No detection limits for these titration methods 

were reported.

Manometric methods, which measure the amount of nitrogen evolved from 

the oxidation of hydrazine, have also been used to determine the

concentrations of several hydrazine compounds in aqueous solution [163].

Nitrogen was released almost instantaneously when hydrazine and 

methylhydrazine were reacted with iodate. The reaction of iodate with 1,2- 

dimethylhydrazine required 15 minutes, but the reaction with 

phenylhydrazine required almost 5 hours. Of the 1.28 and 1.84 mg of 

hydrazine and methylhydrazine tested in samples, respectively, almost 100% 

was recovered. However, only 88% of 5.1 mg of phenylhydrazine in a sample 

could be detected after 5 hours of reaction. A recovery of 93% of 2.4 mg 

of 1,2-dime thylhydrazine in a sample was determined. This procedure was 

rather cumbersome, and the sensitivity was not optimal.



Several colorimetric methods have also been developed and widely 

used. In one method [154], phosphomolybdic acid added to the sample was 

reduced by the hydrazines, including 1,2-dimethylhydrazine, to form a 

molybdenum blue complex, whose color intensity could then be measured. 

NIOSH has validated this method for methylhydrazine over a range of 0.169- 

0.78 mg/cu m for a 15-minute sample at a flowrate of 1.5 liters/minute,

1,1-dimethylhydrazine at 0.566-2.22 mg/cu m for a 100-liter air sample, and 

phenylhydrazine at 10.37-44.8 mg/cu m also for a 100-liter air sample, the 

last two collected at 1 liter/minute [155]. Because the absorbance of 

these three compounds was measured at the same wavelength, this method was 

not specific. For methylhydrazine and 1,1-dimethylhydrazine, there may be 

positive interference from agents such as stannous ion, ferrous ion, zinc, 

sulfur dioxide, and hydrogen sulfide. Oxidizing agents such as halogens 

and oxygen will cause negative interferences. Because phenylhydrazones may 

form in an acid medium, aldehydes and ketones in air may interfere with the 

analysis of phenylhydrazine.

Another colorimetric method has been used to determine the 

concentration of hydrazine or methylhydrazine in aqueous solutions [164- 

168] and to determine hydrazine concentrations in test air samples 

[155,169]. This method was based on the formation of a yellow-orange 

complex in acid solution following the reaction of hydrazine or 

methylhydrazine with para-dimethylaminobenzaldehyde. Peak absorbance was 

measured at 460-480 nm for methylhydrazine [164,165] and 460 nm [166] or 

480-490 nm for hydrazine [164,167]. Since the absorbance bands for 

hydrazine and methylhydrazine overlap, this method cannot be used to 

distinguish the two compounds. McKennis and Witkin [169] tested this



method with a prepared air sample containing hydrazine at a concentration 

of 4-5 mg/cu m. In other studies, 0.5-0.75 ng of hydrazine [164,168] or 

1.5 ng of methylhydrazine [164] in a sample was detected. NIOSH has 

validated this method over a range of 0.589-3.44 mg/cu m for a 100-liter 

air sample [155].

In addition to the molybdenum blue and the potassium iodate methods,

1,1-dimethylhydrazine concentrations in air, water, or biologic samples 

were also measured colorimetrically with trisodium pentacyanoamino ferrate 

as a reagent. The reaction produced a red complex that could be measured 

with a spectrophotometer at 480 nm [170] or 500 nm [156]. Pinkerton et al 

[156] tested this method at a concentration of 6 mg/cu m. Nitrogen dioxide 

was found to inhibit the colored-complex formation, while hydrazine had no 

effect on it.

Continuous monitoring methods have been developed to evaluate the 

exposure of rocket fuel workers and to determine the concentrations in

animal exposure chambers. Buck and Eldridge [171] developed a continuous 

coulometric titration method for determining 1,1-dimethylhydrazine 

concentrations in the air in the vicinity of rocket launching areas. Air 

samples were drawn though the inner chamber of a four-electrode

potentiostat titration cell. The electrolyte used was potassium bromide 

buffered to pH 8. Bromine was evolved in the outer chamber of the

titration cell when 1,1-dimethylhydrazine was introduced. Production 

continued until the reaction was complete and a null point was again

attained. At a flowrate of 835 ml/minute, a current of 42 microamperes for 

0.2 mg/cu m was reported, as compared to a background noise level of ±3
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microamperes. No interference from nitrogen dioxide, unsaturated 

hydrocarbons, or acid gases was found.

Geiger and Vernot [172] used the reaction of iodine with 

methylhydrazine to continuously determine methylhydrazine concentrations in 

an exposure chamber. Air was drawn through a reaction cell, where iodine 

reacted with methylhydrazine stoichiometrically in a buffered potassium 

iodate solution, and the absorbance of iodine was monitored by a 

colorimeter. At a flowrate of 200 ml/minute, the collection efficiency was 

virtually 100% at a concentration of 300 ppm (560 mg/cu m). However, the 

response time was 10 minutes.

In 1976, Saunders and Larkins [18] described a direct-reading 

instrumental method that used paper tapes impregnated with phosphomolybdic 

acid to detect hydrazine. The stain developed on exposure to hydrazine 

gave a photomultiplier reading proportional to the hydrazine concentration. 

An instrument based on this principle and marketed in the United States 

reportedly has a lower limit of detection for hydrazine of 50 ppb with a 

response time of 2-3 minutes. The detection limit for methylhydrazine or 

other hydrazines was not described. Although the method appears to be 

rather sensitive, the specificity is poor, since phosphomolybdic acid will 

respond to all the hydrazines and some other nitrogen compounds.

Saunders and Larkins [18] also reported on two sensitive methods for 

continuous monitoring of hydrazine and methylhydrazine concentrations in 

air. The hydrazine compound was catalytically converted to nitric oxide 

and measured at very low concentrations by a chemiluminescent method. The 

method was able to detect 10 ppb of nitric oxide, the equivalent of 5 ppb 

of hydrazine. However, nitric oxide and nitrogen dioxide, frequently found
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in the air at concentrations of 50-100 ppb, were interferences. Therefore, 

this method is not suitable in an industrial hygiene survey for measuring 

hydrazines in the ppb range. The second method also involved conversion of 

hydrazine compounds to nitric oxide, but the detection of nitric oxide was 

based on electrochemical oxidation-reduction. An instrument was available 

to measure 10 ppb of nitric oxide, which was equal to 5 ppb of hydrazine or 

methylhydrazine. Since nitric oxide and nitrogen dioxide concentrations in 

the air could be determined separately from the hydrazines with this 

instrument, the interferences were eliminated. This method cannot 

differentiate between hydrazine compounds, and the instrument used is not 

commercially available.

Direct-reading detector tubes have also been used to detect 

hydrazines in air. Glass tubes, packed with an acid-base indicating solid, 

changed color when a measured and controlled flow of air containing 

hydrazine was passed through the packing. The length of the color zone was 

proportional to the concentration for a given sample volume, and a 

detection range of 0.25-3 ppm for hydrazine, 1,1-dimethylhydrazine, and 

methylhydrazine tubes was reported [173,174]. Since the tubes react to 

bases, any other substance with the same property, such as hydrazine 

derivatives, ammonia, or amines, would cause interferences. Although 

detector tubes are widely used for on-the-spot checking [28], they lack 

specificity and have low sensitivity, so they are not recommended for 

measuring the concentrations of hydrazines in air for the purpose of 

compliance.

Since some rocket fuels contain more than one of the hydrazines, 

methods are needed to analyze the composition of a mixture.
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Salicylaldehyde has been used as a reagent to determine the concentration 

of hydrazine and 1,1-dimethylhydrazine in a mixture [175-177], because it 

reacts with hydrazine to form a neutral crystalline azine and with 1,1- 

dimethylhydrazine to form a basic hydrazone. Malone [175] used perchloric 

acid titration to determine the total amount of the two hydrazines in the 

mixture; hydrazine was then precipitated from solution as salicylaldazine, 

and the 1,1-dimethylhydrazine in solution was determined. The maximum 

absolute error for either component of the mixture was 0.36%. The 

titration end point of this method was rather ill defined, and Burns and 

Lawler [176] used potentiometric or spectrophotometric titration to reduce 

human error. The potentiometric method was preferred because it was

relatively simple and gave more reproducible results, although there was no 

decrease in average error. Bailey and Medwick [177] used ultraviolet 

spectral absorbance to determine the amount of the compounds produced from 

the reaction of salicylaldehyde and the hydrazine/1,1-dimethylhydrazine 

mixture. Although absorption spectra overlapped, simultaneous equations 

could be used to calculate individual absorbance. Tests with a single 

compound had shown that the method was sensitive to hydrazine at a 

concentration of 0.3 n%/ml and to 1,1-dimethylhydrazine at 0.25 jug/ml. A 

test mixture containing 0.2109-0.5454 g of hydrazine and 0.7292-0.2421 g of

1,1-dimethylhydrazine was separated and showed a standard deviation of 0.8% 

in the recovery of hydrazine and 1.6% for 1,1-dimethylhydrazine. The 

applicable limits of detection for other separation methods were not 

reported.

Previous studies [175,176] have shown that the reaction of 

salicylaldehyde and methylhydrazine did not produce a stable hydrazone that
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could be titrated with perchloric acid. Serencha et al [178] found that, 

with excess perchloric acid, the hydrazone formed from methylhydrazine was 

hydrolyzed back to salicylaldehyde and methylhydrazine. With hydrazine 

precipitated out as salicylaldazine, the hydrolyzed methylhydrazone could 

be titrated; thus, a mixture of the hydrazine and methylhydrazine was 

separated. Clark and Smith [179] used Chloramine-T solution and sodium 

hypochlorite to separate hydrazine and methylhydrazine in mixtures based on 

different rates of oxidation of methylhydrazine.

1,1-Dimethylhydrazine can be analyzed in the presence of 

methylhydrazine by using the differential acetylation of the two compounds 

[180]. In an acetic acid medium, methylhydrazine and acetic anhydride 

reacted immediately to form a neutral compound, while the reaction between

1,1-dimethylhydrazine and acetic anhydride was slow, forming a basic 

compound. 1,1-Dimethylhydrazine was determined by perchloric acid titration 

after neutralization of methylhydrazine. Hydrazine has the same 

acetylation property as methylhydrazine; therefore, a mixture of hydrazine 

and 1,1-dimethylhydrazine could be similarly analyzed.

These separation methods can only be used in a binary mixture; in 

mixtures containing three or more hydrazines, gas-chromatographic methods 

can be used. A chromatographic column containing Celite C22 as the support 

phase and Carbowax 400 as the stationary phase has been used to separate a 

mixture of hydrazine, methylhydrazine, and 1,1-dimethylhydrazine [181,182], 

The peak in the chromatogram of each component was well defined, separated 

by at least a 5-minute retention time difference. With a thermal 

conductivity cell, detection limits of 8, 12, and 2 ng of hydrazine,

methylhydrazine, and 1,1-dimethylhydrazine, respectively, in a sample were
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reported. Dee [183] used the quantitative formation of each hydrazine to 

its corresponding substituted pyrazole by reaction with 2,4-pentanedione to 

enhance the sensitivity of separation of hydrazine and methylhydrazine by 

gas chromatography. With a dual flame ionization detector, a range of 0.5- 

250 ng of either hydrazine or methylhydrazine in a sample was tested. No 

interference from 1,1-dimethylhydrazine, urea, aluminum, iron, copper, or 

alanine was found. The sensitivity of this method was very high, but the 

method was designed to analyze aqueous solutions.

Liu et al [184] described a chromatographic method for determining 

hydrazine concentrations in cigarette smoke. Hydrazine was trapped with 

pentafluorobenzaldehyde. The resulting stable derivative was detected 

chromatographically with an electron capture detector. A limit of 0.1 ng
i

of hydrazine in a sample was reported.

Wood and Anderson [157-159] studied the sampling and analysis of 

hydrazine compounds in air to monitor work environments. Test air samples 

were collected in a sulfuric acid-coated silica gel sorbent. The 

hydrazinium hydrogen sulfates were desorbed from the silica gel with water. 

The resulting solution was neutralized with sodium acetate and reacted with 

2-furaldehyde to form 2-furaldazine or the methylhydrazone, 

dimethylhydrazone, or phenylhydrazone from hydrazine, methylhydrazine, 1,1- 

dimethylhydrazine, or phenylhydrazine, respectively. These derivatives 

were extracted into ethyl acetate and determined by gas chromatography, 

using flame ionization detection. Single peaks of hydrazine, 

methylhydrazine, and 1,1-dimethylhydrazine and double peaks of 

phenylhydrazine were obtained in the chromatogram. This method was very 

sensitive, detecting as little as 2 ng/injection for hydrazine and 35
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ng/injection for methylhydrazine. In a 15-minute, 15-liter air sample, the 

limits of sensitivity correspond to concentrations of 0.0065 mg/cu m (0.005 

ppm) of hydrazine, 0.14 mg/cu m (0.08 ppm) of methylhydrazine, 0.06 mg/cu m 

(0.03 ppm) of 1,1-dimethylhydrazine, and 0.022 mg/cu m (0.005 ppm) of 

phenylhydrazine. However, the reaction time of methylhydrazine with 2- 

furaldehyde needs to be carefully controlled to prevent the formation of a 

secondary product that cannot be eluted from the gas-chromatographic 

column. The desorption efficiency for methylhydrazine was 75%, while it 

was close to 100% for the other hydrazines. However, it has been found (V 

Carter, written communication, November 1977) that 100% recovery for 

hydrazine and 1,1-dimethylhydrazine at low concentrations was difficult to 

achieve. This same investigator has also found that hydrazine adsorbed on 

an acidified silica gel sorbent was stable for only 24 hours. 1,1- 

Dimethylhydrazine was stable for 5 days [157].

Of the analytical methods reviewed, the gas-chromatographic method 

described by Wood and Anderson [157-159] has the best sensitivity and 

specificity for hydrazine, methylhydrazine, 1,1-dimethylhydrazine, and 

phenylhydrazine. Therefore, this method is recommended for analyzing 

concentrations of these four hydrazines in workroom air. The lowest 

amounts of hydrazines in a sample that can be detected with an analytical 

precision of about 15% relative standard deviation were 4 jug for hydrazine, 

9 jug for methylhydrazine, 15 (xg for 1,1-dimethylhydrazine, and 66 jug for 

phenylhydrazine [159] . Since short-term sampling is preferable for car

cinogens, a flowrate of 1 liter/minute is recommended. For a 2-hour sample 

collected at this flowrate, a concentration of 0.04 mg/cu m (0.03 ppm) for 

hydrazine, 0.08 mg/cu m (0.04 ppm) for methylhydrazine, 0.15 mg/cu m (0.06
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ppm) for 1,1-dimethylhydrazine, and 0.6 mg/cu m (0.14 ppm) for 

phenylhydrazine can be accurately determined. Details of the recommended 

method for sampling and analysis are given in Appendix I [161].

The colorimetric para-dimethylaminobenzaldehyde method for hydrazine 

and the molybdenum blue method for methylhydrazine, 1,1-dimethylhydrazine, 

and phenylhydrazine are at least as sensitive as the recommended gas-

chromatographic method, although they are not specific. When no

interfering substances are present, these colorimetric methods can be 

considered as a reasonable alternative. The method described by Dee [183] 

might also be an acceptable alternative, especially for methylhydrazine. 

However, air sampling was not performed, and the applicability of this

method [183] for samples collected from air needs to be established before

it can be recommended.

There is insufficient information to recommend a sampling and 

analytical method for 1,2-dimethylhydrazine for compliance purposes. The 

method recommended in Appendix I is not applicable, since the complex with 

2-furaldehyde would not form. The titration method of Feinsilver et al 

[154] lacks adequate sensitivity to measure a concentration that could 

afford protection to workers. The colorimetric method of NIOSH using 

phosphomolybdic acid [155] should be applicable to 1,2-dimethylhydrazine, 

since it is essentially the same as that tested by Feinsilver et al [154]. 

However, no limit of sensitivity is available for 1,2-dimethylhydrazine. 

para-Dimethylaminobenzaldehyde is probably not a suitable reagent for 

colorimetric determination of 1,2-dimethylhydrazine, since it was not 

adequate as a spray reagent for thin-layer chromatography [185].
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Gas chromatography using a technique different from that recommended 

for other hydrazines has been tested for 1,2-dimethylhydrazine (E Sowinski, 

written communication, November 1977). In this method, a 19-foot x 1/8- 

inch stainless steel column containing 10% Carbowax 20 M and 2% Igepal C0- 

880 and a nitrogen detector were used. A peak was observed at the 0.1—pig 

level in 13.5 minutes when the temperature was programmed from 70-170 C at 

4 C/minute with a helium flow of 20 ml/minute. Acetone, methanol, and 

tetrahydrofuran were suitable solvents. The applicability of this method 

to the analysis of air samples and the range of detection would have to be 

established before it can be recommended as an appropriate analytical 

method. Therefore, no sampling and analytical methods for 1,2- 

dimethylhydrazine are recommended at this time.

Environmental Levels

From July 1972 to June 1977, the Occupational Safety and Health 

Administration [186] conducted three investigations of workplaces in which 

air samples were collected to determine concentrations of hydrazines. 

Measurements of phenylhydrazine were taken in a paint shop and a produce 

warehouse, and samples for hydrazine were taken in a chemical company. No 

place inspected was found to be in violation of the Federal standards, 

which were 1.3 mg/cu m for hydrazine and 22 mg/cu m for phenylhydrazine.

The US Army Environmental Hygiene Agency [187] conducted two surveys 

to evaluate worker exposure to hydrazine and 1,1-dimethylhydrazine at the 

Rocky Mountain Arsenal hydrazine facility in October 1976 and January 1977. 

The gas-chromatographic method as described by Wood and Anderson [157-159] 

was used to determine concentrations of hydrazine and 1,1-dimethylhydrazine
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during various phases of drum filling and tank car loading operations.

Depending on the location of sampling sites, phase of operation, and wind

direction, the concentration determined from area monitoring varied over a

wide range. During the first survey, 32 samples were analyzed for

hydrazine and 12 samples had no detectable concentration. The lowest

detected concentration reported was 0.002 ppm, and the highest, 0.64 ppm,

was found in a metering house for tank car loading during the cleaning of

filters on feedlines. Of the 52 samples analyzed for 1,1—

dimethylhydrazine, 13 had no detectable concentration. The lowest reported

concentration was 0.0004 ppm, and the highest concentration, 1.66 ppm,

occurred 3 feet away from the loading station during drum filling

operations. There were some leaks in the transfer pumps during this

survey; when the leaks were repaired and air samples retaken in January

1977, the concentrations at the same locations were generally lower than

those determined before. The highest concentrations found were 0.39 ppm

for hydrazine 7 feet from the loading station during the drum filling

operation, and 0.35 ppm for 1,1-dimethylhydrazine 60 feet from a blend

metering house during an equipment maintenance operation. All personnel
•+

performing the drumming and loading operations were required to wear 

respirators, and personal air samples were collected both outside and 

inside the masks during various operations. Although rather high 

concentrations were found outside the mask, 0.22-1.98 ppm for hydrazine and 

0.14-4.61 ppm for 1,1-dimethylhydrazine in both surveys, the concentrations 

of these two compounds inside the mask were usually not detectable or less 

than 0.001 ppm. On one occasion, 0.03 ppm of 1,1-dimethylhydrazine was 

detected inside a mask during a drumming operation. This reading was
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considered to be caused by a leak in the face seal of the mask. It was 

concluded that both hydrazine and 1,1-dimethylhydrazine were present around 

the hydrazine facility, but adequate protection to the workers was afforded 

by the use of respirators. The report [187] also indicated that

nitrosodimethylamine was present in the ambient air near 1,1- 

dimethylhydrazine storage and tank car unloading areas, although the

concentrations were not determined because of the lack of a suitable 

method.

Engineering Controls

Engineering design for controlling exposure to the hydrazines and

their salts should accomplish the purpose of maintaining concentrations in

workroom air at or below the recommended environmental limits and of 

minimizing skin and eye contact.

In manufacturing and formulating plants, laboratories, and other 

places where it is suitable and practicable, closed systems, properly 

operated and maintained, should be used to reduce the possibility of vapors 

or aerosols escaping into the workroom air and to minimize the likelihood 

of skin and eye contact. Where closed systems are not feasible, well- 

designed local exhaust ventilation should be provided. Such systems should 

be designed, if possible, to operate under negative pressure to prevent 

leaks into the workroom atmosphere. Guidance for design can be found in 

Industrial Ventilation— A Manual of Recommended Practice [188], in 

Fundamentals Governing the Design and Operation of Local Exhaust Systems 

Z9.2-1971 [189], and in NIOSH's Recommended Industrial Ventilation

Guidelines [190]. Specifically, when a fire hazard exists, particular

185



attention must be given to the need for sparkproof fans and explosion proof 

motors in ventilation systems. An average face velocity of 150 feet/minute 

should be maintained when handling hydrazines or other suspected 

carcinogens in a hood [191]. Where a fire hazard could exist, all 

electrical fixtures used in the ventilation system or in the work area 

should be sparkproof, and all wiring should be enclosed in rigid metal 

conduits [192]. Exhaust air containing hydrazines should not be 

recirculated, and applicable Federal, state, and local regulations should 

be adhered to when exhaust air is released to the outside. Where exhaust 

ventilation is required, adequate makeup air, conditioned as needed for 

comfort, must be provided. Connections between exhaust air vents from a 

regulated area and those from other areas are prohibited, but a common 

makeup air inlet may be used. Exhaust ventilators must be located away 

from intake manifolds to prevent short circuiting. Respiratory protective 

equipment is not an acceptable substitute for proper engineering controls, 

but it should be available for emergencies, for nonroutine maintenance and 

repair situations, and for entry into confined spaces.

An enclosed system for the materials, processes, and operations is

effective only if the integrity of the system is maintained. Such systems

must be inspected regularly by qualified persons, and any leaks or worn

parts must be repaired promptly. The conditions of seals, joints, access 

ports, and other such potential release points should be given special 

attention. Scheduled preventive maintenance, which offers more protection 

to the employee than nonroutine maintenance, should be practiced.
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V . WORK PRACTICES

The recommended work practices for hydrazines are formulated by 

considering the nature of their industrial applications and their chemical, 

physical, and toxicologic properties, from information obtained from 

various sources [2,192-197], and from plant visit observations [28]. 

Generally, work practices adopted for hydrazine, 1,1-dimethylhydrazine, and 

methylhydrazine have been similar [2].

Toxicologic data discussed in Chapter III established that these 

hydrazines present hazards from both inhalation and skin or eye contact. 

From the standpoint of acute toxicity, methylhydrazine is the most toxic of 

the hydrazines [2,20,96,110,111], Eye damage may depend on the basicity of 

the hydrazines, and if so, hydrazine would cause the most severe effect if 

contact occurs. When one considers vapor pressures of the various 

hydrazines, given in Tables XI-1 to XI-5, it can be seen that 1,1- 

dimethylhydrazine vapors have the greatest potential to escape into 

workroom air.

Although specific information on work practices for 1,2- 

dimethylhydrazine and phenylhydrazine was not found, the information on 

toxicity and chemical properties indicates that recommendations based on 

information available for the other three hydrazine bases should be 

adequate for all five compounds and their salts.

So far as is known, the salts of the hydrazines are not flammable or 

combustible, but all the free bases are flammable or combustible as liquids 

and present both fire and explosion hazards as vapors [2,195]. 1,1-

Dimethylhydrazine, with a vapor pressure of about 120 mmHg at 70 F, a
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flashpoint of 34 F, and flammability limits in air from 2 to 95% (v/v) at 

normal temperatures, presents the greatest fire hazard. Hydrazines may 

react explosively with some oxidizing agents, such as fuming nitric acid or 

nitrogen dioxide, and great care must be exercised when circumstances 

require handling of such combinations together, such as in rocket 

operations. Because of these hazards, extreme precautions must be taken in 

the manufacture, handling, transport, storage, and use of these compounds. 

Where a potential for fire or explosion exists, adequate procedures for 

emergency exit and reentry, decontamination of spills or leaks, 

firefighting, and storage are especially important. Potential sources of 

sparks and open flames must be prohibited where there is a fire or 

explosion hazard.

In all situations where hydrazines are present, engineering controls 

should be designed to maintain concentrations in the worker's breathing 

zone at or below the recommended limits, and work practices should be 

implemented to prevent eye and skin contact.

Storage, Handling, and Transport

The recommended procedures for safe storage, handling, and transport 

of hydrazines are based on an understanding of their toxicity, ease of 

oxidation, and flammability. Glass bottles, drums, and tank cars 

constructed of proper material have been used for storing or transporting 

hydrazines [194]. According to a bulletin prepared by Olin Chemicals [1], 

each drum should have a 3/4-inch and a 2-inch screw-type closure in the top 

head, sealed by a polyethylene gasket. The drums may be emptied with a 

small gear pump, sparkproof as necessary, or by nitrogen pressure. When 

nitrogen pressure is used to unload hydrazines, nitrogen should be supplied
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at a pressure of 3 or 4 psig. When a pump is used, nitrogen should be 

supplied at 0.4-0.5 psig.

For storing large quantities of hydrazines, the Air Force [193] and 

FMC Corporation [194] have recommended using horizontal cylindrical tanks 

kept under slight pressure with nitrogen or other inert gases. Each tank 

should be electrically grounded and fitted with a fluid-inlet connection, 

level gauge, pressure gauge, rupture disc, relief valve, and a flame 

arrestor at its top. Rupture-disc discharge should be directed so that no 

working areas will be contaminated. A top outlet with sump and dip-leg 

should be used to eliminate leakage [193]. Large horizontal tanks should 

be mounted on reinforced-concrete saddles, and vertical tanks should be set 

on concrete pads. Drums should be stored on concrete pads with low curbs 

to control drainage [193]. Before drums are emptied, the drums and other 

equipment used in the operation should be electrically bonded and grounded 

[194].

Hydrazines should be stored at temperatures well below their 

respective boiling points, away from ignition sources and oxidants, and 

preferably outdoors. Containers of hydrazines stored outdoors should be 

sheltered against direct sunlight, dirt, snow, water, and ice accumulation 

[194,196]. Within inside storage areas, continuous ventilation should be 

provided [193,196]. Major storage facilities should be diked with 

concrete to hold at least 110% of the total storage capacity and have a 

concrete slab below the storage tank [193], so that the spilled hydrazines 

will not be soaked up by the ground. The diked area should be kept clean, 

and the diking system should drain to a burn basin, a collection basin, or 

reclamation sump [193]. The Air Force [193] has published quantity-
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distance tables to be used as guidelines in determining proper tank 

locations within storage areas. Entrances to the storage area should be 

properly posted, and all containers should be properly labeled.

Materials of Construction

Materials used in equipment that contains or directly contacts 

hydrazines have been selected mostly on the basis of their effects on the 

purity and decomposition of the hydrazines. Cloyd and Murphy [2] 

recommended certain materials for use with hydrazine and methylhydrazine. 

The US Advisory Panel on Fuels and Lubricants [192] also prepared lists of 

materials that are compatible with the three hydrazines used as rocket 

fuels. These recommendations are shown in Table V-l. Other 

recommendations made by the Air Force [193] and the FMC corporation [194] 

are also listed in the table.

Equipment Cleaning

Surfaces that will be in contact with hydrazines should be cleaned to 

limit the introduction of impurities and potential decomposition. In this 

regard, the Air Force [193] has established recommended procedures for 

cleaning all systems and component parts. Cloyd and Murphy [2] recommended 

that, before any stainless steel part is to be used with the hydrazines, it 

should be descaled by etching with an aqueous solution of 3-5% hydrofluoric 

acid and 15-20% nitric acid for approximately 1 hour. The component should 

be made chemically inert; for stainless steel, this may be done by 

immersion in 50% nitric acid for 30 minutes. Plastics can be cleaned with 

a 4% detergent solution for 30 minutes at 120 F [193].

190



TABLE V-l

MATERIAL COMPATIBILITY WITH HYDRAZINE COMPOUNDS

Compatible with Hydrazine and Methylhydrazine

Aluminum Alloy Nos. 356, B356, 
1100, 2014, 2024, 4043, 5052, 
6061, 6066, and Tens 50 

Chromium plating 
Dow Corning Number 11 
Graphite

Inconel and Inconel-X 
Sinclair L743 
Kel-F and polyethylene 
Stainless Steel 304,321,347, and 

1707 PH 
Teflon

Not Compatible with Hydrazine and Methylhydrazine

Carbon steel Johns-Manville Packing No. 76
Copper Nickel
Iron-Base Superalloy A-236* Stainless steel AM-350* and AM-355*

Not Compatible with Methylhydrazine

Lead
Hastelloys 
Iron

Monel
Zinc

Compatible with 1,1-Dimethylhydrazine

Aluminum and its alloys 
Hydropol OT Plastic 
Kel-F and polyethylene 
Mild steel 
Monel
Stainless steel types-303,304 
321,347

Mylar A 
Nickel
Silicone rubber AMS 3305
Teflon
Graphite

Not Compatible with

Copper and its alloys 
Phenolic resin 
Polyvinyl alcohol polymer 
Cellulose acetate butyrate 
Vinyl chloride-acetate copolymer

*Contains over 0.5% molybdenum; should 
hydrazine at temperatures above 160 F

Adapted from references 2,192-194

1,1-Dimethylhydrazine

Isocyanate polyester 
Phenolic-asbestos plastic 
Vinylchloride-vinylidene copolymer 
Organic polysulfide

not be used with hydrazine or methyl-
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Special precautions are necessary for entering tanks or vessels that 

may contain the hydrazines to clean or perform flame- or spark-generating 

operations such as welding and cutting. Before any employee enters a 

vessel, all pipelines leading into or out of the vessel must be blanked to

prevent the entry of hydrazines. The vessel interior should then be washed

with water and purged with air or with nitrogen followed by air. After 

purging the vessel interior, trained personnel should test the vessel 

atmosphere with suitable instruments to ensure that no hazards from fire, 

explosion, oxygen deficiency, or vapor inhalation exist. No one should 

enter a tank or vessel without first being equipped with an appropriate 

respirator (if necessary) and a secured lifeline and harness. Mechanical 

ventilation should be provided continuously when workers are inside the 

tank. At least one other worker should watch at all times from outside the 

vessel. This worker should be equipped with similar respiratory protection 

and secured lifelines and harnesses. An effective communication system 

should be established between workers in the tank and those outside. Two

additional employees should be available to assist in the event of an

emergency. Cutting or welding may be performed only when an authorized 

representative of the employer signs a permit indicating that all necessary 

safety precautions have been taken.-

Spills and Leaks

Spills and leaks may present hazards from inhalation, skin or eye 

contact, ingestion, and fire and explosion. Cloyd and Murphy [2] 

recommended the following basic design considerations to decrease the 

likelihood of these hazards:
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(1) Reduce mechanical joints to a minimum.

(2) Consider maximum pressure in system design.

(3) Eliminate low-lying liquid traps wherever possible.

(4) Provide an inert gas purge system.

(5) Install high stack or scrubber for vent.

In the event of spills or leaks, a self-contained breathing apparatus 

and protective clothing should be worn during the cleanup operation [193]. 

All areas of operation involving hydrazines should have proper drainage 

systems so that leaks and spills can be flushed away immediately. For 

small quantities, spilled hydrazines can be flushed with water and

collected in holding tanks [198]. Hydrazine will decompose to water,

nitrogen, and ammonia by oxidation or by bacterial action. Hydrazines 

should not be discharged into the sewers or waterways, unless first 

decomposed. Dilute solutions of hydrazines, at concentrations less than 

2%, can be collected in open containers and oxidized by adding 10% hydrogen 

peroxide, calcium hypochlorite, or household bleach [198]. Comparatively 

large quantities may be disposed of by burning under proper supervision. 

If leaks develop during transit, the spilled material should be washed away 

with water before the remaining materials are salvaged [193].

Fire and Explosions

The hydrazine bases are flammable or combustible. In aqueous 

solutions, hydrazine at a concentration higher than 50%, methylhydrazine 

higher than 50%, and 1,1-dimethylhydrazine higher than 25% are ignitable at 

normal temperatures [199]. Vapors of hydrazines are explosive in a wide 

range of mixtures with air, 4.7-100% for hydrazine, 2.5-92% for
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methylhydrazine, and 2-95% for 1,1-dimethylhydrazine [9]. The lower limits 

for all but hydrazine can easily be reached in a confined space because of 

relatively high vapor pressures. To avoid the formation of such a mixture, 

and also to retard oxidation, an inert gas such as nitrogen should be used 

to blanket the hydrazine compounds in containers. Hydrazines can ignite 

spontaneously in air when in contact with porous materials such as earth, 

asbestos, wood, or cloth [9,193]. If these materials become soaked with 

hydrazines, they must be thoroughly wetted with water [1] before disposal. 

Rags should never be used to wipe up spills because of the danger of 

spontaneous ignition [29].

Buildings that house equipment for handling or processing hydrazines 

must be well ventilated to prevent the accumulation of vapors or aerosols. 

Automatic water sprinkler systems should be installed in these buildings to 

provide deluge water for fires and with an appropriate triggering device to 

dilute the concentrations of spilled hydrazines [1]. In an enclosed space, 

all personnel must be evacuated when the atmospheric concentration reaches 

20% of the lower explosive limit [193] because of the imminent danger of 

fire and explosion. Oxidants such as hydrogen peroxide, nitric acid, and 

halogens should be kept away from storage areas for hydrazines because of 

the potential for spontaneous ignition.

When an explosion occurs in a closed vessel with nitrogen present, 

the pressure will increase 12-14 times. If air is present, even higher 

pressure will be generated [200]. All equipment used with hydrazines 

should have a working pressure sufficiently greater than the venting 

pressure to accommodate any pressure resulting from an explosion [196], 

Processing or manufacturing equipment should be located away from open
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flame, high temperatures, and congested areas.

Fire involving hydrazines may be supported either by air or by 

oxidants. Air-supported fires may be extinguished by diluting hydrazines 

with a quantity of water one to three times the original volume [193,194]. 

Applying water in a coarse spray is the most efficient method [193]. Water 

both cools and dilutes, and the diluted solution of hydrazines is 

nonflammable. For fires supported by oxidants, water may be used if it 

does not aggravate the situation with the specific oxidant involved. Dry 

chemicals and carbon dioxide may be used to extinguish both air- and 

oxidant-supported fires, but flooding with water will also be necessary to 

prevent reignition [9]. Chemical foam extinguishers are not recommended, 

because hydrazine compounds may deactivate the foam-forming surfactant and 

destabilize the foam [193,194]. Protective clothing and a self-contained 

breathing apparatus must be worn by any person involved in firefighting 

[9]. Advanced or large fires must be fought from a safe distance or from a 

protected location because of the explosion hazard.

Regulated Areas

Regulated areas must be established and maintained where hydrazines 

are manufactured, processed, stored, or otherwise used. To limit the 

number of employees exposed to hydrazines, only those persons needed for 

the job should be allowed access to these areas. A daily roster of the 

employees who enter the regulated areas must also be maintained along with 

environmental monitoring records for later reference. Signs warning of the 

hazards of entry into regulated areas must be prominently displayed.
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Personal Protective Clothing and Equipment

Because hydrazine compounds are dermal irritants and can penetrate 

the skin to cause systemic toxicity, dermal exposure must be prevented. 

All hydrazine-processing equipment or systems should be designed to be as 

enclosed as possible. The immediate surrounding areas should be provided 

with ventilation to prevent the buildup of vapors or aerosols. Personal 

protective equipment for safeguarding the health of workers should not be 

used as a substitute for adequate engineering controls; however, where 

adequate engineering controls are impractical, personal protective 

equipment must be used. Workers in regulated areas must wear work clothing 

consisting of coveralls or any other combination of clothing that offers 

the same protection, hat or head covering, and shoes or shoe covering. If 

there is any possibility of spilling or splashing hydrazines, a plastic 

full-face shield (8-inch minimum) and goggles, rubber or plastic wrist and 

arm protectors, gloves, boots, and a rubber-type apron must be worn [193]. 

Gloves should be made of an impervious material such as natural rubber, 

reclaimed rubber, or vinyl-coated cotton, and footwear should be "fireman- 

type" rubber boots [193,194]. Whenever the splashing of hydrazines is 

likely, such as during loading, unloading, or transfer, impervious clothing 

must be worn. This clothing may be made of rubber, rubberized, or 

fiberglass material impregnated with a corrosion-resistant plastic or 

vinyl-coated cotton [193].

When it is necessary to work in an atmosphere in which the vapor or 

aerosol concentration exceeds the recommended environmental limits, 

approved respirators, as specified in Chapter I, must be used. In confined 

spaces or where concentrations of hydrazines may be high, a self-contained
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breathing apparatus should be used [193]. The employer must establish a 

respiratory protection program in accordance with 29 CFR 1910.134 to ensure 

that clean and well-maintained respirators are available to employees 

required to wear them in the course of their work. In addition, workers 

who are required to wear respirators must be trained in their proper use 

and be able to know how to test them for leakage and proper fit and 

operation.

Safety showers and eyewash fountains must be installed in or close to 

storage and handling areas. Emergency exits must be provided and be 

accessible at all times. The water supply provided should be adequate for 

dilution, flushing, washing, decontamination, and firefighting. All 

emergency eyewash, shower, protective, and firefighting equipment should be 

checked periodically to ensure its serviceability.

Sanitation

Good sanitation and personal hygiene must be practiced to minimize 

the risk of exposure to hydrazines, especially by ingestion. Oral intake 

has been shown to be one of the routes by which hydrazines cause health 

effects [42,145]. Thus, food and beverage consumption, vending machines, 

and open smoking or chewing materials must not be allowed in any area where 

the hydrazines are manufactured, processed, stored, or otherwise used. A 

separate changing room, adjacent to such areas, with showers, washing 

facilities, and lockers that permit separation of street and work clothing 

should be provided for and used by employees working in regulated areas. 

Separate toilet facilities and designated smoking areas, if needed, must be 

provided adjacent to or near the changing room. When leaving the work
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area, employees must wash their hands and face. After a spill or when 

exiting from regulated areas for the last time in a workshift, workers 

should place work clothing in a suitably marked and covered container for 

disposal or laundering prior to further use. Before the last exit from the 

regulated area and before changing into street clothes, the employee must 

shower. Work clothes should not be taken home, and the employer must 

provide for the laundering of the work clothes. Persons laundering the 

clothing must be apprised of the hazards from hydrazines.

Emergency and Decontamination

In case of accidental exposure, the exposed worker should be removed 

from the hazardous environment immediately and all contaminated clothing 

should be removed. The worker should then shower with water for 15 

minutes; if the worker is unconscious, then emergency personnel should wash 

the worker’s skin with water. If hydrazines have contacted the eyes, they 

must be flushed copiously with water [193]. Signs and symptoms of

poisoning by the hydrazines include irritation of eyes, nose, and throat, 

dizziness, nausea, vomiting, and convulsions [196]. Medical assistance 

should be obtained if these signs and symptoms are present. Gross 

contamination must be taken off of protective clothing before removal from 

the wearer. Contaminated work clothes and protective equipment should be 

rinsed with water and stored in a container prior to being cleaned and

decontaminated for reuse or final disposal. Equipment contaminated by 

hydrazines should be flushed thoroughly with a large volume of water or

with diluted acid and dried before it is returned to service [194].
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Laboratory Activities

When the hydrazines are used for research or quality-control 

purposes, several precautions should be taken. For this purpose, 

guidelines established by the National Cancer Institute as published in 

Safety Standardszfor Research Involving Chemical Carcinogens [201] should 

be followed.

Experiments that are conducted in an open hood should be in a hood 

with an average face velocity of 150 feet/minute or higher [191]. Glove 

boxes kept under a negative pressure of 0.5 inches water gauge or more or 

laminar flow biologic cabinets with the face velocity required in an open 

hood can also be used [201]. Discharge of exhaust air from laboratory-type 

hoods should comply with the appropriate Federal and local regulations. 

All work surfaces should be covered with material impervious to absorption 

or penetration by hydrazines. All pipetting should be performed with 

mechanical devices to prevent accidental ingestion of hydrazines. 

Contaminated wastes and animal carcasses should be collected in impermeable 

containers. These containers must be kept closed until being removed for 

disposal.
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VI. DEVELOPMENT OF STANDARD

Basis for Previous Standards

In the United States, the present Federal standards for occupational 

exposure are 8-hour TWA limits of 1.3 mg/cu m for hydrazine, 1.0 mg/cu m 

for 1,1-dimethylhydrazine, 22 mg/cu m for phenylhydrazine, and a ceiling 

concentration of 0.35 mg/cu m for methylhydrazine (29 CFR 1910.1000). 

These present standards are based on the Threshold Limit Values (TLVs) 

adopted by the American Conference of Governmental Industrial Hygienists 

(ACGIH) in 1968. Several foreign countries also have standards for 

occupational exposure to various hydrazines. These exposure limits are 

listed in Table VI-1.

(a) Documentation for Hydrazine

A TLV of 1 ppm (1.3 mg/cu m) for workplace exposure to hydrazine was 

adopted in 1956 by the ACGIH [203]. In addition, the ACGIH suggested that

the dermal route, as well as mucous membranes and eyes, might contribute to

the overall exposure to hydrazine by either airborne or direct contact with 

the substance.

The 1962 edition of the Documentation of the Threshold Limit Values 

for Substances in the Workroom Air [204] indicated a basis derived from the 

work of Comstock et al [55]. The 1966 edition of the documentation [205] 

also listed 1.3 mg/cu m as the TLV but added a study by Thomas and Back 

[206] as a further basis. In the 1971 documentation [207], the review of

Smyth [208], and the studies of Reinhardt and Dinman [209], Patrick and

Back [60], and Weatherby and Yard [210] were included to support the TLV
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TABLE VI-1

OCCUPATIONAL EXPOSURE LIMITS (MG/CU M) 
FOR HYDRAZINES IN FOREIGN COUNTRIES

Country Hydrazine Methylhydrazine 1,1-Dimethylhydrazine Phenylhydrazine

Australia 1.3 0.2 1 22

Belgium 1.3 0.2 1 22

Federal 
Republic 
of Germany

0.13 “■*

Finland 0.13 0.2 1 22

German
Democratic
Republic

0.11 —

Netherlands 0.13 0.2 1 22

Rumania* 0.7 0.1 0.7 15

Sweden 0.13 - - -

Switzerland 0.13 0.2 1 22

USSR 0.1** - - -

Yugoslavia 1.3 0.2 1 22

*Average concentration limit 
**Hydrazine derivatives

Adapted from reference 202

for hydrazine. The 1976 documentation [211] referred to a study by Haun 

and Kinkead [56] in which animals were exposed to hydrazine at 1 or 5 ppm 

intermittently and 1 or 0.2 ppm continuously for 6 months. Depressed 

erythrocyte counts, hemoglobin concentrations, and hematocrit values were 

observed in dogs exposed at 1 ppm continuously. At the two highest
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concentrations, dogs also developed fatty livers. Liver damage occurred in 

mice at all exposure levels. In the exposed mice that survived for a year, 

MacEwen [69] found a dose-related increase of lung tumors. The ACGIH 

concluded from these two additional studies that the TLV for hydrazine 

should be lowered to 0.1 ppm as a TWA concentration for a 40-hour workweek.

In Czechoslovakia, the committee for documentation of MAC's has

recommended a maximum allowable concentration (MAC) of 0.1 mg/cu m for 

hydrazine with a peak of 0.2 mg/cu m [212]. In 1974, a commission of the 

German Research Association concluded that 1.0 ppm, the previous standard 

in the Federal Republic of Germany, could not assure protection in chronic 

exposure [213]. In addition, consideration was given to the 

carcinogenicity demonstrated in animal experiments, and the maximum

workplace concentration (MAK) for hydrazine was reduced to 0.1 ppm. The 

conclusions of the commission were based on a review of the literature that 

included reports on humans [20,37,39,42,214], acute [20,57,58,215] and 

subchronic [55,216,210] animal experiments, and studies on the carcinogenic 

potential of hydrazine sulfate in animals [76,78,79,217,218].

(b) Documentation for Methylhydrazine

In 1966, the ACGIH [219] adopted as a TLV a ceiling concentration of 

0.2 ppm (0.35 mg/cu m). In addition, the ACGIH pointed out that the dermal 

route, as well as the mucous membranes and eyes, might contribute to the 

overall exposure to methylhydrazine. The selection of the ceiling 

concentration was based on a comparison of the acute toxicity of 

methylhydrazine with that of 1,1-dimethylhydrazine [20,208]. This was 

largely based on the observation of Jacobson et al [20] that 

methylhydrazine resembled 1,1-dimethylhydrazine and hydrazine in its toxic
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effects and that the acute toxicity of methylhydrazine was about three 

times that of 1,1-dimethylhydrazine. Since neither intermittent nor 

continuous exposure data were available for methylhydrazine, the ACGIH 

recommended that methylhydrazine exposure be limited to 0.2 ppm as a 

ceiling, which is about one-third the TLV for 1,1-dimethylhydrazine. The 

ACGIH ceiling concentration limit for methylhydrazine has not been changed 

since it was established. The documentation published in 1971 [207]

referred to the studies of Haun et al [92] and Back and Pinkerton [100], 

but the conclusion reached in the 1971 edition did not differ from that in 

the 1966 edition.

In a 1974 report [213] prepared by a commission of the German

Research Association, subacute and subchronic experiments on animals given 

methylhydrazine were cited [101,220]. On the basis of other animal studies 

[58,96,99,102,215,221,222], the commission concluded that methylhydrazine 

was more acutely toxic than hydrazine and 1,1-dimethylhydrazine so that an

MAK should be below 0.1 ppm. However, the commission found no practical

need for an exposure limit in the Federal Republic of Germany.

(c) Documentation for 1,1-Dimethylhydrazine

A TLV of 0.5 ppm (1.0 mg/cu m) for workplace exposure to 1,1- 

dimethylhydrazine was adopted in 1960 by the ACGIH [223]. In addition to 

recommending this environmental limit, the ACGIH stated that the dermal 

route, as well as mucous membranes and eyes, was a potential contributor to 

the overall exposure to 1,1-dimethylhydrazine. Although no basis for this 

TLV was provided in 1960, the 1962 edition of the Documentation of the 

Threshold Limit Values for Substances in the Workroom Air [204] indicated 

that the TLV was based primarily on studies of acute toxicity by Jacobson
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et al [20] and Hodge [114]; anemia, weight loss, and lethargy observed by 

Reinhart et al [110] in dogs exposed at 5 ppm; and questionable evidence of 

liver dysfunction that Shook and Cowart [49] observed in workers exposed to

1.1-dimethylhydrazine. After considering data from these studies, the 

ACGIH recommended that a concentration of 0.5 ppm, or one-tenth the 

concentration causing anemia, weight loss, and lethargy in dogs, be adopted 

as the TLV for 1,1-dimethylhydrazine. The ACGIH TLV has not been modified 

since it was originally recommended, and the documentation [207] published 

in 1971 referred to the same information as the 1962 edition.

In 1974, a commission o^ the German Research Association of the 

Federal Republic of Germany recommended an MAK of 0.1 ppm (0.25 mg/cu m) 

for 1,1-dimethylhydrazine [213]. Although supporting results from several 

other studies [20,49,111,117,215,] were mentioned, the study of Rinehart et 

al [110] was the main basis for the conclusion of the commission that a 

maximum tolerated dose had not yet been determined in animal experiments. 

Because the possibility of the previous MAK of 0.5 ppm causing damage could 

not be discounted and because 1,1-dimethylhydrazine was considered more 

toxic than hydrazine in short-term exposure, the commission lowered the MAK 

for 1,1-dimethylhydrazine to 0.1 ppm. Dermal absorption was also noted as 

a possible route of entry. Several studies [78,81,224-226] on the 

carcinogenicity of 1,1-dimethylhydrazine were reviewed, but the 

carcinogenic potency of this compound was considered to be very weak.

(d) Documentation for 1,2-Dimethylhydrazine

There currently is no Federal standard for occupational exposure to

1.2-dimethylhydrazine. In 1974, a commission of the German Research 

Assocation of the Federal Republic of Germany cited several estimates
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[20,215,227] of LC50's or LD50's in a report on 1,2-dimethylhydrazine 

[213]. It also mentioned that 1,2-dimethylhydrazine caused carcinomas in 

the intestines of rats after sc and oral administration [227-229], and in 

the colon of mice after sc injection [135]. The commission concluded that

1,2-dimethylhydrazine was highly carcinogenic, but it saw no practical need 

for establishing an MAK.

(e) Documentation for Phenylhydrazine

In 1956, the ACGIH established a TLV for phenylhydrazine of 5 ppm (22 

mg/cu m) [203]. The ACGIH noted that the dermal route was a potential 

contributor to the overall exposure to phenylhydrazine. The 1962 edition 

of the Documentation of the Threshold Limit Values for Substances in the 

Workroom Air [204] suggested that the TLV should be the same as that for 

aniline or phenol, ie, 5 ppm. The current TLV for phenylhydrazine still is 

5 ppm. Later editions of the documentation [207] contained the same 

substance and conclusion as the 1962 edition.

Basis for the Recommended Standard

(a) Permissible Exposure Limits

The potential for worker exposure to the hydrazines is primarily 

through two routes of exposure, inhalation and contact with skin or eyes. 

Hydrazine [59], methylhydrazine [98], and 1,1-dimethylhydrazine [115] were 

all readily absorbed through the shaved skin of dogs. Each compound was 

detectable in the blood in 30 seconds, and signs of acute toxicity ensued. 

Two drops of anhydrous hydrazine applied to the shaved skin of rats, as 

well as 3 ml applied to rabbits, were lethal [57], suggesting that even a 

small spill on the skin of workers could be toxic. In general, the
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compound with the highest vapor pressure, 1,1-dimethylhydrazine, should be 

the least toxic by skin absorption because of rapid evaporation. Since

1,1-dimethylhydrazine is toxic by this route [115], other hydrazines are 

likely to have a similar effect. In regard to eye damage, as little as two 

drops of a 25% solution of hydrazine applied to the eyes of animals caused 

permanent damage [57]. Methylhydrazine, 1,1-dimethylhydrazine, and 1,2- 

dimethylhydrazine, however, produced only temporary, mild effects [58], 

These effects are probably pH dependent, since alkaline compounds would be 

expected to cause more damage to eye surfaces; thus, the eye damage

expected for phenylhydrazine and the salts of hydrazines may be similarly

related to pH. The salts would be at least as water soluble, if not more 

so than the free bases, and many are acidic, suggesting they would be more 

readily removed by tear formation or induced flushing.

Results of animal studies [20,92,111] suggest that methylhydrazine 

may be the most acutely toxic of the hydrazines. In humans, 90 ppm (169

mg/cu m) of methylhydrazine when inhaled for 10 minutes was tolerated [44]. 

The median concentrations for detectable odor have been reported to be 3-4 

ppm (3.92-5.22 mg/cu m) for hydrazine, 1-3 ppm (1.88-5.64 mg/cu m) for 

methylhydrazine, and 6-14 ppm (14.7-34.3 mg/cu m) for 1,1-dimethylhydrazine 

[20], but, as was discussed in Effects on Humans, actually may be lower for 

many people. An additional report [48] indicated a lower value for 1,1- 

dimethylhydrazine, 0.3 ppm (0.74 mg/cu m). The odor of phenylhydrazine, 

described as faint [10], may not be strong enough to warn workers of its 

presence. Since methylhydrazine at 90 ppm did not impair a worker's 

ability to escape, other less acutely toxic hydrazines at the same

concentration would not be expected to interfere with this ability. To
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this end, the odor of the three hydrazines studied could provide warning of 

acutely dangerous concentrations; however, odor should not be relied on 

routinely because of such problems as individual variations in threshold

and odor fatigue.

Hydrazine and its salts are believed to pose a carcinogenic risk to 

humans since a wide variety of studies have shown that exposed rodents have 

developed an elevated incidence of lung tumors. Adenomas and some

carcinomas have been observed in mice receiving hydrazine or its sulfate 

salt in drinking water [80,79] and by intubation [70-75,77,78,81], ip 

injection [78,81,82,84], and inhalation [69]. Lung tumors were also found 

in rats [76]; however, hydrazine was not carcinogenic in hamsters [75,85]. 

In a few cases [70,71,75], liver tumors were also reported. Some studies 

may be deficient in certain areas, such as inadequate controls,

insufficient numbers of experimental animals, insufficient time of 

observation, or failure to examine all animals or all target organs; 

nevertheless, these deficiencies are not enough to negate the obvious 

conclusion, namely, that hydrazine is a carcinogen in mice and rats and 

that the lungs are the primary target organ.

Liver damage is the most serious effect, other than cancer, of 

hydrazine toxicity. In one study [56], 4 of 80 mice exposed to hydrazine 

at 30-33.6 ppm-hours/week died of liver damage in the form of lipid 

accumulation, and some survivors developed lung tumors [69]. This exposure 

is equivalent to 1 mg/cu m over a 40-hour week. In dogs, both anemia and 

fatty livers were seen in those exposed at 150 or 168 ppm-hours/week [56].

In considering the environmental limit, it is not possible to derive 

a level that can be demonstrated to protect workers against the predicted
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carcinogenic effect of hydrazine. The control of hydrazine in breathing 

zone air should be attained better by a ceiling rather than a TWA limit, in 

large part because of the resultant limitation on excursions. However, 

certain restrictions are imposed by the limited sensitivity of the 

recommended analytical method. At a sampling rate of 1 liter/minute, if a 

2-hour sample is collected and a relative standard deviation of 15% in the 

reproducibility of the analysis is accepted, then the lowest concentration 

of hydrazine in the air that is detectable should be sufficiently low to 

protect against hepatotoxicity and significantly lower the risk of cancer. 

A permissible limit for hydrazine of 0.04 mg/cu m (0.03 ppm) measured over 

2 hours is, therefore, recommended.

Animal studies also provide evidence of the carcinogenicity of 

methylhydrazine. Lung tumors were found in mice given either 

methylhydrazine or its sulfate salt in drinking water [80], In hamsters, 

malignant histiocytomas of the liver (54% incidence) and tumors of the 

cecum (14% incidence) were found in a similar drinking water study [106]. 

In another study [107], with a different experimental design, no tumors 

were found in hamsters given methylhydrazine adjusted to pH 3.5; a 12% 

incidence of liver tumors was found only in hamsters given unbuffered 

solutions of methylhydrazine. Since the site of tumor formation was 

species specific, it is not possible to conclude what the primary site 

affected might be in humans; however, the results in animals suggest that 

methylhydrazine poses a carcinogenic risk to workers.

As mentioned above, in considering the environmental limit for 

hydrazine, a short-term ceiling limit provides better control than a TWA 

limit. As in the case of hydrazine, there are severe limitations placed on
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the environmental limit because of the lack of sensitivity of the 

analytical method. Even without consideration of possible carcinogenicity, 

there are severe toxic effects that can occur as the result of exposure to 

methylhydrazine. In dogs, hepatic choleostasis [93,94] and anemia [93] 

have been observed at exposures of 30-33.6 ppm-hours/week. Anemia was also 

observed in dogs and rats exposed at 16.8 ppm-hours/week [95] and in dogs 

exposed at 6 ppm-hours/week [93]. This lowest dose would correspond to a 

40-hours/week exposure concentration of about 0.3 mg/cu m (0.15 ppm). In a 

2-hour sample, the lowest concentration at which a 15% relative standard 

deviation in the reproducibility of the analysis is obtained is about 0.08 

mg/cu m (0.04 ppm). This concentration is therefore recommended as a 2- 

hour limit for methylhydrazine. Even though carcinogenicity is the primary 

concern, the results of animal studies suggest that this environmental 

limit may not have a great margin of safety for other effects of exposure.

Mice given 1,1-dimethylhydrazine in drinking water for life developed 

a 79% incidence of blood vessel tumors and a 71% incidence of lung tumors, 

primarily adenomas but also some adenocarcinomas [127]. A second study 

suggests that lung tumors in mice were induced after intubation of 1,1- 

dimethylhydrazine [78]. The other effects of 1,1-dimethylhydrazine in 

animals appear to be mild compared with those of the other hydrazines. At 

5 ppm (12.2 mg/cu m), slight anemia [110] and elevation of SGPT activity 

[112] have been observed in dogs. However, toxic effects on the liver have 

been ascribed to nitrosodimethylamine contamination [113] and, indeed, 

nitrosodimethylamine has been reported to be present in the air over 

containers of 1,1-dimethylhydrazine [187]. Though 1,1-dimethylhydrazine is 

toxic by itself, it is perhaps not heptotoxic unless contaminated. While



it can be speculated that contaminants also play a role in the induction of 

tumors in animals given 1,1-dimethylhydrazine, the evidence for this is not 

strong enough to suggest that pure material would not cause cancer; thus,

1.1-dimethylhydrazine should be regulated as a carcinogen. From the 

recommended analytical method, it can be shown that the lowest 

concentration of 1,1-dimethylhydrazine that can be detected with a 15% 

relative standard deviation is about 0.15 mg/cu m (0.06 ppm) in a 2-hour 

sample at 1 liter/minute, so this concentration is recommended as the 

environmental limit for 1,1-dimethylhydrazine. It does offer a high degree 

of protection against all except anticipated carcinogenic effects, and, if 

adhered to, it should substantially reduce, if not prevent, the expected 

development of 1,1-dimethylhydrazine induced cancer.

Even though there are no data on humans or on inhalation studies of

1.2-dimethylhydrazine, it appears obvious that this compound should be 

considered as a carcinogen for humans. The exact form of cancer that would 

be expected in humans, however, is less clear since metabolic activation is 

likely to play a role in the selection of target organs at which tumors 

appear. Rats [131] and mice [127] given 1,2-dimethylhydrazine in drinking 

water developed hemangiosarcomas and lung tumors; hamsters developed 

primarily hemangiosarcomas [85]. 1,2-Dimethylhydrazine, given by 

intubation, induced colonic tumors in rats [130,131]. Guinea pigs 

developed bile duct carcinomas [126]. Colon tumors have been the 

predominant finding after sc injections in mice [128,132-136,143] and in 

rats [131,137,138,140,142]. In one injection study [85], blood vessel 

tumors, lung tumors, and kidney tumors were also reported, but these tumors 

were not found in other studies [131,132], which indicates that these
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tumors are probably not of major significance in animals when compared to 

colon tumors. No tumors were found in miniature swine and dogs, but these 

animals had severe liver damage and most died of intoxication [126]. Even 

though an acceptable analytical method has not been developed for the 

measurement of 1,2-dimethylhydrazine, the overwhelming evidence of its 

carcinogenicity in animals argues for the strict regulation of 1,2- 

dimethylhydrazine in the workplace. Stringent work practices, proper 

engineering controls, and closed systems must be considered where this 

compound is encountered in the workplace.

Angiomas and angiosarcomas of the blood vessels were found in mice 

given phenylhydrazine hydrochloride in the drinking water [152]. In mice 

given the same compound by intubation, an increased incidence of adenomas

and adenocarcinomas of the lungs was observed [151]. The difference in the 

sites of tumor formation according to the route of administration is not 

unlike the results seen for 1,2-dimethylhydrazine. The information 

presented indicates that phenylhydrazine should be regulated as a 

carcinogen. Phenylhydrazine is also a hemolytic agent [145,147,148], but 

sufficient information on which to establish a safe environmental limit for 

protecting against blood effects is not available. The lowest 

concentration tested in which the reproducibility of the analysis was 

within 15% relative standard deviation is the equivalent of 0.6 mg/cu m

(0.14 ppm) when the sample is collected over 2 hours at a flowrate of 1

liter/minute. Thus, this concentration is proposed as the environmental 

limit for phenylhydrazine. The protective value of this limit cannot now

be determined.
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The worker must be protected to minimize the risks of systemic 

toxicity, eye damage, and sensitization that can result from contact with 

the hydrazines and their salts and of cancer that is predicted to be a 

possible result from contact with or inhalation of these hydrazines. For 

these reasons, occupational exposure to hydrazines is defined as work in 

any area where one or more of the hydrazines is stored, produced, 

processed, transported, handled, or otherwise used and present in such a 

manner that vapors or aerosols may be released in workroom air or that the 

hydrazines may spill or splash onto the skin or into the eyes. Because 

even small spills of hydrazines on the skin can result in severe systemic 

toxicity, all employees assigned to such a work area, even temporarily, for 

any purpose, including maintenance or repair, should be regarded as 

occupationally exposed. Workers in areas where hydrazines are used, either 

in open or closed systems should be considered to be occupationally 

exposed, since there is no effective way to demonstrate that a closed 

system remains completely free of leaks. Conversely, workers assigned only 

to control rooms in which no air from other hydrazine containing areas is 

present, should not be considered occupationally exposed.

Although information is not available on the effects of exposure to 

mixtures of hydrazines or to combinations of the free bases and the acid 

salts, it seems reasonable that their toxicity would be additive. While 

the analytical method outlined in Appendix I is not capable of the reliable 

measurement of concentrations below the recommended limits, it will provide 

at least a semiquantitative indication of potentially hazardous 

combinations. Should such a situation exist, employee exposure must be
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lowered below the recommended limits for individual compounds to ensure 

adequate protection of employees.

(b) Sampling and Analysis

The recommended method of sampling and analysis should be simple, 

sensitive, and selective for the individual compounds. In addition, 

sampling should be representative of the workers' breathing zone air 

without impeding their normal job performance. As was discussed in more 

detail in Chapter IV, sampling on silica gel tubes followed by gas 

chromatographic analysis is recommended. Detailed information on these 

methods is given in Appendix I. The sampling tubes are easily handled and 

do not interfere with the worker and the method is specific for each 

hydrazine compound. Where mixtures are present, all compounds can be 

determined at the same time on a single sample. However, the method has 

been developed only recently, so that its limitations are not as well known 

as are those of the colorimetric methods [155]. A suitable method for 

collection of the salts of hydrazines has not been attempted, either in the 

laboratory or in field studies. There is some question as to whether or 

not the other compounds are as stable as 1,1-dimethylhydrazine when they 

are stored in the collection tube for several days, a factor of great 

importance if the samples must be shipped from their collection site to a 

laboratory in a different location. Even more important, information on 

the precision, accuracy, and sensitivity of the method is limited and 

appears to indicate that the method may be less sensitive than would be 

desired. While slight alterations in the method might improve sensitivity, 

necessary information is not available at the present time. In addition, 

since the complex with furaldehyde would not form, the same gas-
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chromatographic method is not suitable for measurement of 1,2- 

dimethylhydrazine.

(c) Medical Surveillance

Mandatory medical surveillance for workers exposed to the hydrazines 

should include comprehensive preplacement and periodic examinations giving 

particular attention to signs of liver, kidney, or blood cell damage, such 

as jaundice or anemia, and to evidence of possible dermal exposure. The 

frequency of periodic examinations should depend on the probable exposure 

of the workers, but in all cases examinations should be conducted at least 

annually. For those who work with hydrazines intermittently, examinations 

should be conducted during or shortly after such work. Because the 

hemolytic effects ranged from moderate to severe in animals exposed to all 

the hydrazines, specific clinical tests should include complete blood 

counts including differential. Similarily, varying degrees of liver damage 

have been observed, so tests of liver function, including SGOT and SGPT are 

recommended. Complete urinalysis should be performed and should include 

microscopic examination, determination of specific gravity, and glucose 

content. Tests for urobilinogen and serum bilirubin should also be 

considered. Chest roentgenograms should be performed to aid in the 

detection of any adverse effects of hydrazines on the lungs. In workers 

over 40, proctosigmoidoscopy must be performed on those exposed to 1,2- 

dimethylhydrazine, and it should be considered for workers exposed to the 

other hydrazines.

Preplacement and interim medical and work histories should supplement 

the information obtained from medical tests. Because animal studies show 

that numerous body systems have been adversely affected by exposure to the
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hydrazines, regardless of the type of exposure, medical and work histories 

and physical examinations should be thorough, with particular attention 

being paid to combinations of signs or symptoms that may point to a toxic 

action of the hydrazines. The results of animal experiments make it 

evident that these hydrazines are eye irritants. If hydrazines are 

accidentally splashed into the eyes, they should be treated by immediate 

flushing with copious quantities of water. All of the free bases, and 

probably the salts as well, are readily absorbed through the skin. 

Responsible medical personnel should ensure that plant personnel are 

properly instructed on these points, as appropriate to the forms of 

hydrazines being handled.

Since there is evidence from animal experiments to suggest that these 

hydrazines are carcinogenic, all pertinent medical records should be kept 

for 30 years after the last occupational exposure to the hydrazines.

(d) Personal Protective Equipment and Clothing

The hydrazines, especially hydrazine, may damage the eyes, and they 

are likely to be dermal irritants that penetrate the skin to cause systemic 

toxicity. Therefore, full-face plastic shields (8-inch minimum) and 

goggles, gloves, boots, and other impervious protective clothing should be 

used to prevent direct contact. During emergencies, nonroutine 

maintenance, or entry into confined spaces, respirators may be used to 

minimize inhalation exposure. Since these hydrazines are judged to pose a 

risk of cancer to employees, only self-contained, air-supplied respirators 

with positive pressure in the facepiece are recommended for working in 

areas where vapors or aerosols of the hydrazines are present.
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All foreseeable events that could result in a need to escape from a 

hazardous area should be evaluated to establish evacuation procedures and 

to determine the equipment needed. Escape equipment should be kept in 

readily accessible locations. A self-contained breathing apparatus with 

positive pressure in the face piece should be provided for escape except 

for those situations where the time otherwise needed for escape from the 

area is less than that required to put on the respirator or those cases in 

which an immediate life-threatening situation, such as explosion, exists.

(e) Informing Employees of Hazards

A continuing education program is an important part of preventive 

hygiene. At the beginning of employment and periodically thereafter, 

employees who are potentially exposed to hydrazines should be instructed by 

properly trained persons about job hazards, signs and symptoms of 

overexposure, proper procedures for routine handling and disposal, and 

proper use and maintenance of protective clothing and equipment. The 

function of monitoring equipment, such as personal samplers, should be 

explained so that employers understand their part in workplace monitoring. 

Medical monitoring procedures and their importance in detecting possible 

adverse effects should be explained and the importance of employees 

participating in these procedures emphasized. Periodic drills on emergency 

situations, evacuation procedures, spill cleanup, and decontamination 

procedures should be held to ensure that employees can perform their 

assigned duties in these situations.

(f) Work Practices

Severe health effects, both acute and chronic, can result from 

exposure to hydrazines and their salts. For this reason, both the number
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of persons handling hydrazines and their exposures should be limited to the 

greatest extent possible. Regulated areas should be established where 

hydrazines are present and only those employees needed to perform the job 

and knowledgeable of the hazards associated with the handling of hydrazines 

should be given access. Records of persons entering regulated areas should 

be maintained to provide documentation of those employees who may be 

occupationally exposed to hydrazines. Proper exhaust ventilation, waste 

disposal, and hygiene practices, including the removal of work clothing and 

showering when leaving the regulated area, should minimize the spread of 

contamination to other areas.

Within the regulated area, workrooms should be designed to prevent 

the buildup of vapor or aerosol concentrations of hydrazines. Engineering 

controls, such as process enclosure, can be an effective way to minimize 

airborne contamination. All process equipment should be designed to 

minimize the possibility of leaks. Sanitation measures, such as 

prohibiting smoking or eating in work areas where hydrazines are present, 

are necessary to limit ingestion of hydrazines.

Contact with hydrazines can result in irreversible eye damage, and 

the five hydrazines, as well as their salts, probably all penetrate the 

skin readily. When hydrazines are used in open systems, a condition often 

found in laboratories or following a spill or leak, it is especially 

important that the employee not come into contact with hydrazines or their 

concentrated solutions. Proper procedures must be followed to prevent such 

contact.

Hydrazine can be ignited either in the liquid or vapor phase. At 

normal temperatures, aqueous solutions of hydrazine, methylhydrazine, and
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1.1-dimethylhydrazine at concentrations greater than 40, 50, and 25%,

respectively, are also ignitable. Because of relatively high vapor 

pressures, the lower explosion limits for methylhydrazine and 1,1-

dimethylhydrazine can be reached at room temperature. While it is unlikely 

that the lower explosion limit for hydrazine would be reached at normal 

temperatures, as pointed out in Chapter V, hydrazine, methylhydrazine, and

1.1-dimethylhydrazine are pyrophoric under some conditions and hypergolic 

with some oxidizing substances. To avoid the formation of explosive 

concentrations in air and also to retard air oxidation, an inert gas should 

blanket these hydrazines. In storing, handling, and transporting flammable 

or combustible hydrazines, employees should remove all sources of sparks 

and oxidants and keep other incompatible material away to reduce the 

possibility of fire or explosion. The explosion hazard, along with the 

toxicity of hydrazines, makes it necessary to establish stringent

procedures in case of emergencies, including fires, or for entry into 

confined spaces.

(g) Monitoring and Recordkeeping Requirements

The need for medical and environmental monitoring is established by 

an evaluation of the work situation. Likewise, whether or not protective

clothing and equipment are needed to prevent direct skin and eye contact

must be determined by conditions present in the workplace. Those areas 

that must be regulated also have to be established. For these reasons an 

industrial hygiene survey should be conducted before any new operation is 

begun to determine the areas where employees may be exposed to hydrazines. 

A similar survey should be conducted once a year and within 14 days after

218



any process changes likely to increase the concentration of hydrazines to 

ensure that employees continue to be adequately protected.

In work areas in which occupational exposure to hydrazines is found, 

a program of monitoring of the breathing zone of workers should be 

instituted. Other monitoring, such as area monitoring, may be a useful 

supplement to personal monitoring, especially for evaluation of the process 

and of methods of controlling the process. Records of monitoring and logs 

of those entering regulated areas should be kept, and copies should be 

maintained together with individual medical records to help answer 

questions about possible associations, casual or otherwise, between health 

effects and the work environment. Environmental and medical records should 

be kept for 30 years after the individual's last occupational exposure to 

hydrazines because of the long induction time, often 20 or more years, in 

tumor development. This is also compatible with requirements of the Toxic 

Substances Control Act.

%
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VII. RESEARCH NEEDS

Few studies have reported the toxic effects of exposure to hydrazines 

on humans, and when these effects were reported, the extent of exposure was 

not determined nor were the cases followed up. No epidemiologic studies 

and little environmental data were found. Epidemiologic studies are needed 

of worker populations whose length of exposure to hydrazines approaches a 

normal working lifetime. These studies could determine possible chronic 

effects, such as blood or liver abnormalities and cancer, and possible 

interactions such as smoking and alcohol consumption. Environmental and 

medical data are needed to establish the validity of the present 

recommendations.

CNS effects, hemolytic changes, renal and hepatic damage, and 

tumorigenic effects caused by exposure to the hydrazines have been well 

documented, mostly in animal studies. However, there are species 

differences for many of these effects, and it is not apparent at this time 

which effects on animals most closely resemble those on humans. This 

problem needs clarification. In addition, toxic effects caused by inhaling 

phenylhydrazine and 1,2-dimethylhydrazine need to be investigated, 

especially as they relate to long-term exposure. Better information on 

questions of whether or not the hydrazines cause prenatal or perinatal 

changes (teratogenicity), inherited changes (germinal mutagenicity), or 

other effects on reproduction is needed.

The stability of the hydrazines needs to be examined with particular 

emphasis on the quantity and identity of impurities that occur either from
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manufacture or decomposition. Possible effects of these impurities on

toxicity of the hydrazines should be investigated.

Available data from animal studies support the conclusion that 

hydrazine and 1,2-dimethylhydrazine may be carcinogenic in humans; the 

exposure routes were usually sc, ip, or oral. The role of 

nitrosodimethylamine in tumorigenicity and the amount present in 1,1- 

dimethylhydrazine need to be examined. Data on the carcinogenicity of

methylhydrazine and phenylhydrazine are less definitive, and more 

information on these compounds is needed. In many cases, only specific 

sites of tumor induction were examined; these studies should be extended to 

include other organs or systems. It is likely that these hydrazines are 

carcinogens when inhaled, but confirmation is desirable. A mechanism of 

carcinogenicity for 1,2-dimethylhydrazine has been postulated, but no 

similar information is available for the other hydrazines. Further studies 

on the metabolism of these compounds may reveal possible mechanisms and 

species differences relevant to tumor induction.

A gas-chromatographic method has been recommended for monitoring 

hydrazines except for 1,2-dimethylhydrazine. A method for 1,2- 

dimethylhydrazine, although it may have limited use, needs to be developed. 

The gas-chromatographic method itself is not as sensitive as would be 

desirable, and it has not been tested for its ability to measure hydrazine 

salts. The method needs to be tested in the field and modified to improve 

sensitivity. A sampling method capable of collecting both vapors and 

aerosols needs to be tested. In addition to the gas-chromatographic 

method, a specific and continuous monitoring method would be desirable to
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document exposure in the workplace and to warn of overexposure. A method 

capable of measuring total hydrazines would also be useful, especially in 

situations where employees are exposed to mixtures of hydrazines.
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IX. APPENDIX I

This sampling and analytical method for hydrazines is adapted from 

NIOSH Method No. P&CAM 248 [161].

Principle of the Method

A measured volume of air is drawn through a tube containing sulfuric 

acid-coated silica gel to trap the hydrazine compounds. The sorbent is 

treated with distilled water to desorb the hydrazines. Reagent containing 

sodium acetate and 2-furaldehyde is added and the resulting derivatives are 

extracted into ethyl acetate and analyzed by gas chromatography with flame- 

ionization detection.

Range and Sensitivity

The ranges of the method in terms of the weight of analyte collected

are:

hydrazine 4- 6,000 jug/sample
methylhydrazine 9- 9,000 "
1,1-dimethylhydrazine 15-12,000 11
phenylhydrazine 66-21,000 "

The lower ends of the ranges are the lowest levels at which the analytical 

method was evaluated. At these levels, the precision was no worse than 14% 

relative standard deviation, and the desorption efficiency was 75% or

SAMPLING AND ANALYTICAL METHOD FOR HYDRAZINES
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higher. The maximum amount of each hydrazine compound retained prior to

breakthrough of the first sorbent section is at least 0.2 millimole. The

practical upper limit for the analysis is 0.2 millimoles of total hydrazine

compounds in 2 ml of eluent. This is 25 mole% of the acid present and 20

mole% of the 2-furaldehyde reagent added. When hydrazine, methylhydrazine,

or phenylhydrazine are present at such high concentrations, derivatives may

not be entirely soluble in the reaction mixture. However, they will be
✓

dissolved by the ethyl acetate added for extraction.

Interferences

(a) Water vapor is not a sampling interference since it activates, 

rather than deactivates, the sulfuric acid in the sorbent.

(b) Any compound that has nearly the same retention time on the 

gas-chromatographic column as one of the derivatives of the hydrazines is 

an interferent.

(1) Atmospheric contaminants. A bulk sample of liquid or 

solid sources of vapors should be submitted at the same time as the sample 

tubes so that chemical identification of possible interferents can be made. 

The bulk sample must not be transported in the same container as the sample 

tubes.

(2) Reagent contaminants. Reagent grade chemicals of the 

highest purity available must be used. 2-Furaldehyde is unstable and must 

be redistilled prior to use and stored in a freezer (-20 C).
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Precision and Accuracy

The volume of air sampled can be measured to within ±2% if a pump 

with a calibrated volume indicator is used. Volumes calculated from 

initially set flowrates may be less accurate (±5-10%) unless changes in 

flowrate are manually or electronically monitored and compensated. The 

collection efficiency is 100% under most conditions. This is demonstrated 

by a negligible amount of compound measured in the backup section of the 

sorbent tube. Desorption may be incomplete, particularly for 

methylhydrazine, near the lower limit of analytical measurement. In 

preparing calibration curves, desorption of standards from sorbent sections 

compensates for such losses, so that accuracy is increased. No losses have 

been observed for 1,1-dimethylhydrazine stored on sorbent sections in 

sealed tubes for up to 28 days at ordinary room temperatures.

The precision of the analysis is dependent on the precision and 

sensitivity of the technique used to quantitate the gas-chromatographic 

peaks of samples and standards. An electronic digital integrator with 

baseline correction capability is useful for this purpose. Near the lower 

limits of analytical measurement manual peak height measurements are more 

reproducible. A relative standard deviation of 0.04 has been determined 

for analyses of two sets of six consecutive 20-liter air samples of 1.6 and 

3.8 mg/cu m of 1,1-dimethylhydrazine in air. This method gave results for

1,1-dimethylhydrazine at the levels 1-10 mg/cu m.

Advantages and Disadvantages

The method uses a small, portable sampling device involving no 

liquids. This is an advantage for sampling air in a worker’s breathing 

zone without interfering with normal work activities. It also simplifies
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transportation to the analytical laboratory. The sorbent tube has a high 

capacity. It can be used for at least 8 hours to measure a workday average 

concentration, or for shorter times to measure excursion concentrations. 

Desorption and preparation of samples for analysis involve simple 

procedures and equipment. Several hydrazine compounds can be collected and 

determined simultaneously. The gas-chromatographic analysis distinguishes 

which are present and at what individual concentrations they occur. Inter

ferences by amines are less serious than in a colorimetric method.

The major disadvantage of the method is that 2 hours are required for 

desorption and reaction of samples and standards. Also, when 

methylhydrazine is present, the reaction time must be carefully controlled.

Apparatus

(a) Air Sampling Equipment

(1) Sorbent. The silica gel substrate should be high 

quality, such as Silica Gel D-08, chromatographic grade, activated and 

fines-free, 45/60 mesh, a product of Coast Engineering Laboratories, or an 

equivalent grade of silica gel. The sulfuric acid coating is prepared as 

follows: a selected amount, W, of silica gel is weighed in a glass bottle.

Reagent grade concentrated sulfuric acid (95-98%) is added directly to the 

silica gel with a glass dropper until the total weight in the bottle 

becomes 1.25 W. The bottle is immediately sealed and shaken to uniformly 

distribute the sulfuric acid on the silica gel. Mixing is repeated 

intermittently for an hour as the mixture cools. The resulting material is 

quite hygroscopic and should not be exposed to air any longer than 

necessary.
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(2) Sampling Tubes. Glass tubes 8-cm long and 6-mm

internal diameter, tapered and flame-sealed at one end, are packed with two 

200-mg sections of sulfuric acid-coated silica gel. Glass-wool plugs are 

used to separate and enclose the sections. The other end of the tube is 

flame-sealed to prevent contamination during storage prior to use. 

Polyethylene caps are used to seal the tubes after sampling is completed. 

Pressure drops across these tubes average 6 mmHg at 200 cc/minute and 33 

mmHg at 1,000 cc/minute flowrates. The primary absorbing section of the 

tube is that further away from either end; the backup section is butted 

against a taper.

(3) Personal Sampling Pump. Pumps must be capable of

operation at 1 liter/minute for 2 hours with a sampling device in line and 

should have flow indicators. Each pump is calibrated with a representative 

sorbent tube in line. A wet or dry test meter or a bubble meter capable of 

measuring a flowrate of 1 liter/minute to within ±2% is used in the 

calibration. Figure XI-1 shows a typical calibration setup for sampling 

pumps with a soapbubble meter.

(b) Gas chromatograph with a flame-ionization detector.

Temperature programming capability is desirable.

(c) Gas-chromatographic column, 1-meter x 2-mm internal diameter 

glass, silanized and packed with 10% (by weight) Silicone 0V-7 on 80/100- 

mesh Supelcoport or equivalent support.

(d) Strip chart recorder compatible with the gas chromatograph.

An electronic digital integrator is desirable.

(e) Test tubes, 5-ml, sealed by insertion of a septum.

(f) Syringes, 10-jul.
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(g) Pipettes, 0.5-ml and 2-ml.

(h) Volumetric flasks, 10-ml.

(i) File.

(j) Forceps.

Reagents

All chemicals must be ACS Reagent Grade or better.

(a) Hydrazine.

(b) Methylhydrazine.

(c) 1,1-Dimethylhydrazine.

(d) Phenylhydrazine.

(e) Water, double distilled, aldehyde-free.

(f) 2-Furaldehyde (furfural), boiling point 39-40 C at 5 mmHg. If

this reagent is not clear, it must be redistilled prior to use to remove

oxidation products. Store distillate under refrigeration.

(g) Sodium acetate solution, 0.50 moles/liter (41 g/liter).

(h) Reagent solution. Prepared by diluting 2 ml of 2-furaldehyde 

to 50 ml with the sodium acetate solution. This should be prepared fresh 

daily.

(i) Gas-chromatographic gases.

(1) Carrier helium, Bureau of Mines Grade A.

(2) Hydrogen prepurified.

(3) Air, compressed and filtered.
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Procedure

(a) Cleaning of Glassware. Wash with detergent solution, rinse 

with tap water and distilled water, and dry in an oven.

(b) Collection and Shipping of Samples

(1) Immediately before beginning the collection of a

sample, break each end of the sorbent tube so as to provide openings of at 

least 2-mm diameter.

(2) Attach the tubing from the sampling pump to the backup 

end of the sampling tubes. Sample air must not pass through any hose or 

tubing before entering the sorbent tube.

(3) With the sorbent tube in a vertical position, sample

the air at 1 liter/minute for 2 hours. Record the volume of air sampled on 

the sampling flow and time.

(4) Immediately after sampling is completed, cap the

sorbent tubes with the polyethylene caps. Rubber caps must not be used.

(5) Obtain a blank sample by handling one tube in the same 

manner as the sample tubes (break, seal, and ship) except pump no air 

through it.

(6) Pack the tubes tightly to minimize chances of breakage

during transit. Tubes should not be subjected to extremes of high

temperature or low pressure.

(c) Analysis of Samples

(1) Preparation of Samples. Score each tube with a file

5 mm in front of the first glass-wool plug and break it open. Remove the 

glass-wool plug that precedes the first sorbent section and transfer it 

along with this initial section to a 5-ml test tube that can be septum-

248



sealed. Likewise, transfer the second plug and sorbent section to another 

test tube. Label each appropriately for separate analysis.

(2) Desorption. Desorb the hydrazine compounds from the 

sulfuric acid-coated silica gel by adding 2 ml of distilled water to each 

sorbent section. Seal the tubes. Shake the mixtures occasionally over a 

period of 1 hour. Tests have shown that desorption reaches a maximum 

within an hour.

(3) Derivatization. Add 2 ml of reagent solution to each 

test tube containing sorbent and eluent. When methylhydrazine is expected 

in the sample or standard, the time of reagent addition must be exactly 

noted for each mixture. Mix the reagents thoroughly.

(4) Extraction. After 1 hour of reaction, add 0.5 ml of 

ethyl acetate to each test tube, seal tightly, and shake vigorously for 1 

minute. For methylhydrazine, the reaction time must be exactly 1 hour, 

since a secondary reaction is occurring in the aqueous solution. Allow the 

ethyl acetate layer to settle out on top of the aqueous layer. 

Centrifuging accelerates this process. Samples of the ethyl acetate 

extracts are then analyzed by gas chromatography.

(d) Gas-Chromatographic Conditions. Typical operation conditons 

for the gas chromatograph are as follows:

(1) Helium carrier gas flowrate, 50 ml/minute.

(2) Hydrogen gas flowrate to detector, 40 ml/minute.

(3) Air flowrate to detector, 540 ml/minute.

(4) Injection port temperature, 150 C.

(5) Detector temperature, 200 C.
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(6) Column temperature— programmed, 80 C for 12 minutes, to 

185 C at 24 C/minute, and for 8 minutes. When only methylhydrazine and

1,1-dimethylhydrazine are present, isothermal analysis at 80 C is 

appropriate; when only hydrazine and phenylhydrazine are present, 185 C is 

appropriate.

(e) Injection of Sample. To eliminate difficulties arising from 

blowback or distillation within the syringe, use the solvent-flush 

injection technique. Flush the 10-/zl syringe several times with ethyl 

acetate to clean the barrel and plunger. Draw in 1 jul of ethyl acetate. 

With the needle removed from contact with liquid, pull the plunger back 

about 0.4 ill to form a pocket of air. Then immerse the tip of the needle 

in the ethyl acetate extract layer of a sample and withdraw a 3-jul portion, 

taking into consideration the volume in the needle. Remove the needle from 

the sample and pull the plunger back another 0.4 /il to minimize evaporation 

from the tip of the needle. Inject and analyze duplicate 3-fil aliquots of 

each sample and standard extract.

(f) Gas-Chromatographic Peak Measurement. Measure the areas or 

peak heights of the hydrazine derivative peaks obtained from analyses of 

samples and standards. At lower concentrations peak-height measurements 

may be more precise.

Calibration and Standards

(a) Preparation of a Standard Solution in Water. Calculate for

each compound i the volume Vi (jul) :
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Vi = Xi x Vs
Di (or Ci)

Xi = the anticipated average concentration (mg/cu m) of com
pound i in air.

Vs = volume (liters) of air sampled.
Di = density (g/ml) of a pure compound i.
Ci = concentration (g/ml) of the compound i in a known stan

dard aqueous solution

Add the calculated volumes of each compound or aqueous standard 

solution to a 10-ml volumetric flask and dilute to the mark. A 10-jul 

portion of this new standard contains amounts of compounds equal to the 

amounts collected from Vs of concentration Xi. Aqueous solutions of 

hydrazine compounds are unstable and should be prepared fresh when used.

(b) Preparation of Standards on Sorbent Sections. Add 200 mg of 

sulfuric acid-coated silica gel to each of 10 test tubes that can be 

tightly sealed with a septum. These may be weighed from bulk sorbent or 

obtained from unused tubes. Add 2.5, 5.0, 10.0, 15.0, and 20.0 nl of the 

prepared standard to pairs of silica gel sections in the tubes. Use a 10- 

fil syringe and inject through the septum onto the walls of the tube 

containing sorbent. Withdraw the syringe and shake the tube to distribute 

the hydrazines. These standards correspond to 0.25, 0.5, 1, 1.5, and 2

times Xi in Vs, respectively. Other standards may be similarly prepared, 

if desired.

If samples are to be stored for longer than 1 week before analysis, 

prepare standards on sulfuric acid-coated silica gel soon after receipt of 

the samples in the laboratory. Store samples and standards at the same 

conditions so that storage losses (if any) will be similar.
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Calculations

(a) Prepare a calibration curve for each hydrazine compound by 

plotting peak areas (or heights) obtained from the analyses of standards 

against nominal amounts on the standard sorbent sections (Ai, jug).

Ai = Vi x Di

where Vi and Di are defined in Calibration and Standards.

(b) Read the amount of each compound from the appropriate 

calibration curve, using average peak heights from each sample. Correct 

each value for the amount found in the corresponding blank, if any. Add

the amounts found in the front and backup sections (if any) of the same

sample tube to obtain the total weight of compound in the air volume 

sampled.

(c) Divide the total weight of each compound on each tube volume

of air sampled (Vs) to obtain the concentration of that compound in

/ug/liter or mg/cu m.
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X. APPENDIX II

MATERIAL SAFETY DATA SHEET

The following items of information which are applicable to a specific 

product or material shall be provided in the appropriate block of the 

Material Safety Data Sheet (MSDS).

The product designation is inserted in the block in the upper left 

corner of the first page to facilitate filing and retrieval. Print in 

upper case letters as large as possible. It should be printed to read

upright with the sheet turned sideways. The product designation is that 

name or code designation which appears on the label, or by which the 

product is sold or known by employees. The relative numerical hazard 

ratings and key statements are those determined by the rules in Chapter V, 

Part B, of the NIOSH publication, An Identification System for 

Occupationally Hazardous Materials. The company identification may be 

printed in the upper right corner if desired.

(a) Section I. Product Identification

The manufacturer's name, address, and regular and emergency telephone 

numbers (including area code) are inserted in the appropriate blocks of

Section I. The company listed should be a source of detailed backup

information on the hazards of the material(s) covered by the MSDS. The 

listing of suppliers or wholesale distributors is discouraged. The trade 

name should be the product designation or common name associated with the 

material. The synonyms are those commonly used for the product, especially
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formal chemical nomenclature. Every known chemical designation or 

competitor’s trade name need not be listed.

(b) Section II. Hazardous Ingredients

The "materials" listed in Section II shall be those substances which 

are part of the hazardous product covered by the MSDS and individually meet 

any of the criteria defining a hazardous material. Thus, one component of 

a multicomponent product might be listed because of its toxicity, another

component because of its flammability, while a third component could be

included both for its toxicity and its reactivity. Note that a MSDS for a 

single component product must have the name of the material repeated in 

this section to avoid giving the impression that there are no hazardous

ingredients.

Chemical substances should be listed according to their complete name 

derived from a recognized system of nomenclature. Where possible, avoid 

using common names and general class names such as "aromatic amine," 

"safety solvent," or "aliphatic hydrocarbon" when the specific name is

known.

The ”%" may be the approximate percentage by weight or volume 

(indicate basis) which each hazardous ingredient of the mixture bears to

the whole mixture. This may be indicated as a range or maximum amount, ie, 

"10-40% vol" or "10% max wt" to avoid disclosure of trade secrets.

Toxic hazard data shall be stated in terms of concentration, mode of 

exposure or test, and animal used, eg, "100 ppm LC50-rat," "25 mg/kg LD50- 

skin-rabbit," "75 ppm LC man," or "permissible exposure from 29 CFR

1910.1000," or, if not available, from other sources of publications such 

as the American Conference of Governmental Industrial Hygienlsts or the
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American National Standards Institute Inc. Flashpoint, shock sensitivity, 

or similar descriptive data may be used to indicate flammability, 

reactivity, or similar hazardous properties of the material.

(c) Section III. Physical Data

The data in Section III should be for the total mixture and should 

include the boiling point and melting point in degrees Fahrenheit (Celsius 

in parentheses); vapor pressure, in conventional millimeters of mercury 

(mmHg); vapor density of gas or vapor (air = 1); solubility in water, in 

parts/hundred parts of water by weight; specific gravity (water = 1); 

percent volatiles (indicated if by weight or volume) at 70 F (21.1 C);

evaporation rate for liquids or sublimable solids, relative to butyl 

acetate; and appearance and odor. These data are useful for the control of 

toxic substances. Boiling point, vapor density, percent volatiles, vapor 

pressure, and evaporation are useful for designing proper ventilation 

equipment. This information is also useful for design and deployment of 

adequate fire and spill containment equipment. The appearance and odor may 

facilitate identification of substances stored in improperly marked 

containers, or when spilled.

(d) Section IV. Fire and Explosion Data

Section IV should contain complete fire and explosion data for the 

product, including flashpoint and autoignition temperature in degrees 

Fahrenheit (Celsius in parentheses); flammable limits, in percent by volume 

in air; suitable extinguishing media or materials; special firefighting 

procedures; and unusual fire and explosion hazard information. If the 

product presents no fire hazard, insert "NO FIRE HAZARD" on the line 

labeled "Extinguishing Media."
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(e) Section V. Health Hazard Information

The "Health Hazard Data" should be a combined estimate of the hazard 

of the total product. This can be expressed as a TWA concentration, as a 

permissible exposure, or by some other indication of an acceptable 

standard. Other data are acceptable, such as lowest LD50 if multiple 

components are involved.

Under "Routes of Exposure," comments in each category should reflect

the potential hazard from absorption by the route in question. Comments

should indicate the severity of the effect and the basis for the statement

if possible. The basis might be animal studies, analogy with similar

products, or human experiences. Comments such as "yes" or "possible" are

not helpful. Typical comments might be:

Skin Contact— single short contact, no adverse effects likely;
prolonged or repeated contact, possibly mild irritation.

Eye Contact— some pain and mild transient irritation; no corneal
scarring.

"Emergency and First Aid Procedures" should be written in lay

language and should primarily represent first-aid treatment that could be 

provided by paramedical personnel or individuals trained in first aid.

Information in the "Notes to Physician" section should include any

special medical information which would be of assistance to an attending 

physician including required or recommended preplacement and periodic 

medical examinations, diagnostic procedures, and medical management of 

overexposed employees.
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(f) Section VI. Reactivity Data

The comments in Section VI relate to safe storage and handling of 

hazardous, unstable substances. It is particularly important to highlight 

instability or incompatibility to common substances or circumstances, such 

as water, direct sunlight, steel or copper piping, acids, alkalies, etc. 

"Hazardous Decomposition Products" shall include those products released 

under fire conditions. It must also include dangerous products produced by 

aging, such as peroxides in the case of some ethers. Where applicable, 

shelf life should also be indicated.

(g) Section VII. Spill or Leak Procedures

Detailed procedures for cleanup and disposal should be listed with 

emphasis on precautions to be taken to protect employees assigned to 

cleanup detail. Specific neutralizing chemicals or procedures should be 

described in detail. Disposal methods should be explicit including proper 

labeling of containers holding residues and ultimate disposal methods such 

as "sanitary landfill" or "incineration." Warnings such as "comply with 

local, state, and Federal antipollution ordinances" are proper but not 

sufficient. Specific procedures shall be identified.

(h) Section VIII. Special Protection Information

Section VIII requires specific information. Statements such as 

"Yes," "No," or "If necessary" are not informative. Ventilation 

requirements should be specific as to type and preferred methods. 

Respirators shall be specified as to type and NIOSH or MSHA approval class, 

ie, "Supplied air," "Organic vapor canister," etc. Protective equipment 

must be specified as to type and materials of construction.

257



(i) Section IX. Special Precautions

"Precautionary Statements" shall consist of the label statements 

selected for use on the container or placard. Additional information on 

any aspect of safety or health not covered in other sections should be 

inserted in Section IX. The lower block can contain references to 

published guides or in-house procedures for handling and storage. 

Department of Transportation markings and classifications and other 

freight, handling, or storage requirements and environmental controls can 

be noted.

(j) Signature and Filing

Finally, the name and address of the responsible person who completed 

the MSDS and the date of completion are entered. This will facilitate 

correction of errors and identify a source of additional information.

The MSDS shall be filed in a location readily accessible to employees 

exposed to the hazardous substance. The MSDS can be used as a training aid 

and basis for discussion during safety meetings and training of new 

employees. It should assist management by directing attention to the need 

for specific control engineering, work practices, and protective measures 

to ensure safe handling and use of the material. It will aid the safety 

and health staff in planning a safe and healthful work environment and in 

suggesting appropriate emergency procedures and sources of help in the 

event of harmful exposure of employees.
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MATERIAL SAFETY DATA SHEET
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IV FIRE AND EXPLOSION DATA
F L A S H  P O I N T  
( T E S T  M E T H O D )

A U T O I G N I T I O N
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VI REACTIVITY DATA

C O N D I T I O N S  C O N T R I B U T I N G  T O  I N S T A B I L I T Y

I N C O L P A I  iB I L I T Y
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C O N D I T I O N S  C O N T R I B U T I N G  T O  H A Z A R D O U S  P O L Y M E R I Z A T I O N

VII SPILL OR LEAK PROCEDURES

S T E P S  T O  B E  T A K E N  IF M A T E R I A L  IS R E L E A S E D  O R  S P I L L E D  

N E U T R A L I Z I N G  C H E M I C A L S
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VIII SPECIAL PROTECTION INFORMATION
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IX SPECIAL PRECAUTIONS
P R E C A U T I O N A R Y
s t a t e m e n t s

O T H E R  H A N D L I N G  A N D  
S T O R A G E  R E Q U I R E M E N T S
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XI. TABLES AND FIGURE 

TABLE XI-1

PHYSICAL AND CHEMICAL PROPERTIES OF HYDRAZINE

Molecular formula 

CAS Number 

Formula weight 

Appearance

Autoignition temperature

Boiling point 

Explosive limits 

Flashpoint (open cup)

Freezing point 

Odor

Specific gravity (25/4 C) 

pKa

Solubility

Vapor density (air = 1)

Vapor pressure

Saturation concentration at 25 C

Conversion factors
(at 760 mmHg and 25 C)

H2NNH2

000302012

32.05

Colorless, oily liquid; fumes in air

24 C on iron-rust surface, 270 C on a 
glass surface

113.5 C

4.7-100% by volume in air 

38-52 C

1.4-1.5 C

Ammonia-like or fishy

1.004

8.07

Soluble in water, ethanol, and isobu- 
thanol; insoluble in chloroform and 
ether

1.04

14.4 mmHg at 25 C 

18,900 ppm

1 ppm = 1.31 mg/cu m 
1 mg/cu m = 0.76 ppm

Adapted from references 9-11,20-22
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TABLE XI-2

PHYSICAL AND CHEMICAL PROPERTIES OF METHYLHYDRAZINE

Molecular formula 

CAS Number 

Formula weight 

Appearance

Autoignition temperature 

Boiling point 

Explosive limits 

Flashpoint (open cup)

Freezing point 

Odor

Specific gravity (20/4 C) 

pKa

Solubility

Vapor density (air = 1)

Vapor pressure

Saturation concentration at 25 C

Conversion factors
(at 760 mmHg and 25 C)

Adapted from references 9-11,20-22

CH3NHNH2

000060344

46.07

Colorless liquid 

Unknown

87.5 C

2.5-92% by volume in air 

63 C (145 F)

-21 to -52 C 

Ammonia-like 

0.874 

7.87

Soluble in water, ethanol, and ether 

1.59

49.6 mmHg at 25 C

65,300 ppm

1 ppm = 1.88 mg/cu m 
1 mg/cu m = 0.53 ppm
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TABLE XI-3

PHYSICAL AND CHEMICAL PROPERTIES OF 1,1-DIMETHYLHYDRAZINE

Molecular formula 

CAS Number 

Formula weight 

Appearance

Autoignition temperature 

Boiling point 

Explosive limits 

Flashpoint (open cup)

Freezing point 

Odor

Specific gravity (25 C) 

pKa

Solubility

Vapor density (air = 1)

Vapor pressure

Saturation concentration at 25 C

Conversion factors
(at 760 mmHg and 25 C)

Adapted from references 9-11,20-22

(CH3)2NNH2

000057147

60.10

Colorless, mobile liquid 

249 C

62.5-63.9 C

2-95% by volume in air 

1 C 

-58 C

Ammonia-like or fishy

0.782

7.21

Soluble in water, ethanol, and ether

2.08

157 mmHg at 25 C

206,600 ppm

1 ppm = 2.46 mg/cu m 
1 mg/cu m = 0.41 ppm

265



TABLE XI-4

PHYSICAL AND CHEMICAL PROPERTIES OF 1,2-DIMETHYLHYDRAZINE

Molecular formula 

CAS Number 

Formula weight 

Appearance

Autoignition temperature

Boiling point

Explosive limits

Flashpoint

Freezing point

Melting point

Odor

Specific gravity (20/4 C) 

Solubility

Vapor density (air = 1)

Vapor pressure

Saturation concentration at 25 C

Conversion factors
(at 760 mmHg and 25 C)

CH3NHNHCH3

000540738

60.1

Colorless liquid 

Unknown 

80-81 C 

Unknown
f t

I t

-9 C

Ammonia-like or fishy 

0.827

Soluble in water, ethanol, and ether

2.08

69.9 mmHg at 25 C

92,000 ppm

1 ppm = 2.46 mg/cu m 
1 mg/cu m = 0.41 ppm

Adapted from references 5,20
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TABLE XI-5

PHYSICAL AND CHEMICAL PROPERTIES OF PHENYLHYDRAZINE

Molecular formula 

CAS Number 

Formula weight 

Appearance

Autoignition temperature 

Boiling point 

Explosive limits 

Flashpoint (open cup)

Freezing point 

Odor

Specific gravity (25/4 C) 

pKb

Solubility

Vapor density (air = 1)

Vapor pressure

Saturation concentration at 25 C

Conversion factors
(at 760 mmHg and 25 C)

Adapted from references 9-11,20-22

C6H5NHNH2

000100630

108.14

Yellow, monoclinic crystals or oil 

174 C

243.5 C with decomposition

Unknown

378 C

19.4-19.6 C 

Faint aromatic 

1.0978 

8.79

Soluble in alcohol, benzene, chloro
form, and ether; sparingly soluble in 
water, petroleum ether, and dilute 
acid solutions

3.74

0.04 mmHg at 25 C 

50 ppm

1 ppm = 4.42 mg/cu m 
1 mg/cu m = 0.23 ppm
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TABLE XI-6

OCCUPATIONS WITH POTENTIAL EXPOSURE TO HYDRAZINES

Agricultural chemical workers

Analytical chemists

Anticorrosion additive workers

Boiler operators

Catalyst reclaimers

Chlorine scavenger makers

Drug makers

Dyemakers

Explosive makers

Foamed plastic makers

Fuel cell makers

Herbicide makers

Hydraulic fluid workers

Hydrazine and hydrazine- 
derivative makers

Insecticide makers

Water treaters 

Jet fuel handlers 

Jet fuel makers 

Nitron makers

Organic chemical synthesizers 

Oxygen scavenger makers 

Photographic developer makers 

Rocket fuel handlers 

Rocket fuel makers 

Rubber workers 

Silverplating workers 

Solder flux makers 

Solderers

Textile dyers, acrylic and vinyl 

Vat dyemakers

Adapted from references 11,23
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FIGURE X I— 1

CALIBRATION SETUP FOR PERSONAL SAMPLING WITH SILICA GEL TUBE
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